配网高压设备运行隐患在线监测方法研究  

Research on Online Monitoring Methods for Operational Hazards of High-voltage Equipment in Distribution Network

作  者:李峰 王翠林 张文伟 樊小朝 LI Feng;WANG Cui-lin;ZHANG Wen-wei;FAN Xiao-chao(State Grid Hunan Province Electric Power Co.,Ltd.Xiangxi Power Supply Branch,Jishou 416000,China;Department of New Energy Science and Engineering,Xinjiang University of Engineering,Urumqi830023,China)

机构地区:[1]国网湖南省电力有限公司湘西供电分公司,湖南吉首416000 [2]新疆工程学院,新能源科学与工程系,新疆乌鲁木齐830023

出  处:《电力电子技术》2025年第3期65-69,共5页Power Electronics

基  金:国家自然科学基金(52266018);新疆工程学院博士启动金项目(2023XGYBQJ01);新疆维吾尔自治区重点研发项目(2022B01009)。

摘  要:针对配网内部故障难以提前发现并预防的问题,提出了一种新型配网高压设备运行隐患在线监测方法,旨在通过测量配网高压设备各相之间的电压总谐波畸变率(THD)最大差异值,并与规程设定的限值进行比较,从而判定设备是否存在隐患。基于此,设计并开发了一台高压设备运行隐患在线检测仪。最后,为验证所提方法的有效性,选取了150台不同类型的高压运行设备进行验证实验。结果表明,该方法能够极大降低隐患排查难度,可为配网高压设备正常运行提供有力保障,具有较好的实用性。A new online monitoring method for hidden dangers in the operation of high-voltage equipment in the dis-tribution network is proposed to address the problem of difficult early detection and prevention of internal faults.The aim is to determine whether the equipment has hidden dangers by measuring the maximum difference in total harmonic distortion(THD)between the voltage phases of high-voltage equipment in the distribution network and co-mparing it with the limit values set by regulations.Based on this,an on-line detector for hidden dangers of high-voltage equipment is designed and developed.Finally,in order to verify the effectiveness of the proposed method,150 different types of high-voltage operation equipment are selected for verification experiments.The results show that this method can greatly reduce the difficulty of identifying hidden dangers,provide strong support for the normal operation of high-voltage equipment in the distribution network,and have good practicality.

关 键 词:配网 高压设备 总谐波畸变率 

分 类 号:TN819.1[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象