基于状态方程的二氧化碳与原油体系最小混相压力预测  

Prediction of Minimum Miscible Pressure of Carbon Dioxide and Crude Oil System Based on Equation of State

作  者:宋国亮 孟雨新 张承丽[2] 赵震 王志新 SONG Guoliang;MENG Yuxin;ZHANG Chengli;ZHAO Zhen;WANG Zhixin(Department of Mathematics and Statistics,Northeast Petroleum University,Daqing Heilongjiang 163318,China;Department of Petroleum Engineering,Northeast Petroleum University,Daqing Heilongjiang 163318,China)

机构地区:[1]东北石油大学数学与统计学院,黑龙江大庆163318 [2]东北石油大学石油工程学院,黑龙江大庆163318

出  处:《当代化工》2025年第2期469-473,共5页Contemporary Chemical Industry

基  金:黑龙江省自然科学基金项目(项目编号:LH2020E013)。

摘  要:室内实验及现场应用案例表明最小混相压力(MMP)对CO_(2)驱油效果影响较大,由于MMP是动态变化的过程,在开发过程反复用实验方法测定MMP会产生较高的经济成本。因此,人们尝试采用理论计算方法计算MMP。介绍了理论计算法中的几种主流的状态方程,基于上述方程利用Winprop模块预测目标区块的MMP,并用拟三元相图分析混相状态。结果表明:PR-EOS(1978)的预测精度最高,准确率为93.75%,该方程能够预测CO_(2)驱替过程中MMP的动态变化,为现场调整注入压力提供参考。Laboratory experiments and field applications have demonstrated that the minimum miscible pressure (MMP)significantly affects the effectiveness of CO_(2) flooding.However,MMP is subject to dynamic changes,the repeated experimental determination of MMP through the development process can incur substantial economic costs.Consequently,theoretical calculation methods for estimating MMP have been explored.In this study,several predominant equations of state utilized in theoretical calculations were introduced.Utilizing these equations,the MMP of the target block was predicted through the Winprop module,and the miscibility state was analyzed via a pseudo ternary phase diagram.The results indicated that the predictive accuracy of the PR-EOS (1978) was superior,with an accuracy rate of 93.75%.This model is capable of predicting the dynamic variations in MMP during CO_(2) flooding,offering valuable reference for the adjustment of injection pressures in the field.

关 键 词:CO_(2)驱 最小混相压力 状态方程 拟三元相图 

分 类 号:TE992.1[石油与天然气工程—石油机械设备] TQ018[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象