YOLO-PointMap:基于轻量化动态特征融合的实时人体背部穴位识别  被引量:1

YOLO-PointMap:Real-time Human Back Acupoint Recognition Based on Lightweight Dynamic Feature Fusion

在线阅读下载全文

作  者:黄凌风 杨世龙 谢耀钦[1] HUANG Lingfeng;YANG Shilong;XIE Yaoqin(Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China)

机构地区:[1]中国科学院深圳先进技术研究院,深圳518055

出  处:《集成技术》2025年第2期58-70,共13页Journal of Integration Technology

基  金:国家自然科学基金项目(U20A20373);国家科技攻关计划项目(2022YFC2409000);深圳市科技计划项目(KQTD20180411185028798,ZDSY20130401165820357);介入手术机器人诊疗关键技术深圳市工程实验室项目(XMHT20220104009)。

摘  要:针灸是中医学的重要组成部分,在世界各地均具有广泛的应用。然而,传统针灸疗法的穴位定位依赖医生经验,缺乏标准化,导致疗效再现性较差,阻碍了其推广。针灸机器人是一种智能医疗设备,为针灸技术的标准化和推广提供了新契机。该文提出一种改进的YOLOv8-Pose模型——YOLOPointMap,旨在解决穴位密集分布和特征不明显等问题。通过引入动态卷积优化C2f模块和基于通道注意力的特征融合模块,该文提出的模型在多尺度特征提取和融合方面的性能显著提升。实验结果表明,YOLO-PointMap在测试集上的端点误差、正确关键点百分比和基于COCO标准的mAP_(50-95(Pose))等指标优于现有模型,其值分别达到了3.27、1.00和84.90%,尤其是在密集关键点检测和弱特征区域定位方面。这不仅为针灸机器人技术的发展提供了有力支持,而且展现了YOLO-PointMap在虚拟现实和智能交互等领域的潜在应用价值。As a vital part of traditional Chinese medicine,acupuncture has extensive application value all over the world.However,the reliance on practitioners’experience for acupoint localization in traditional acupuncture methods leads to a lack of standardization,restricting its reproducibility and broader adoption.Acupuncture robots,as a kind of intelligent medical devices,offer new opportunities for standardizing and promoting acupuncture techniques.This paper introduces an improved YOLOv8-Pose model,YOLOPointMap,designed to address challenges in dense acupoint distribution and weak feature recognition.By incorporating dynamic convolution to optimize the C2f module and introducing a channel-attention-based feature fusion module,the model achieves significant advancements in multi-scale feature extraction and integration.Experimental results show that the end point error(EPE),percentage of correct keypoints(PCK)and mAP_(50-95(Pose))indexes of YOLO-PointMap on the test set are superior to the existing models,with the values reaching 3.27,1.00 and 84.90%respectively,especially in dense key point identification and weak feature region localization.It provides strong support for the development of acupuncture robot technology,and shows the potential application value in the fields of virtual reality and intelligent interaction.

关 键 词:穴位定位 关键点检测 YOLO-PointMap 动态卷积 特征融合 

分 类 号:TP399[自动化与计算机技术—计算机应用技术] R319[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象