Intelligent modeling method for OV models in DoDAF2.0 based on knowledge graph  

作  者:ZHANG Yue JIANG Jiang YANG Kewei WANG Xingliang XU Chi LI Minghao 

机构地区:[1]College of Systems Engineering,National University of Defense Technology,Changsha 410073,China

出  处:《Journal of Systems Engineering and Electronics》2025年第1期139-154,共16页系统工程与电子技术(英文版)

基  金:National Natural Science Foundation of China(71690233,71971213,71901214)。

摘  要:Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.

关 键 词:system of systems(SoS)architecture operational viewpoint(OV)model meta model bidirectional long short-term memory and conditional random field(BiLSTM-CRF) model generation systems modeling language 

分 类 号:TU205[建筑科学—建筑设计及理论] TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象