Intrusion detection system for controller area network  

作  者:Vinayak Tanksale 

机构地区:[1]Department of Computer Science,Ball State University,Muncie,IN 47306,USA

出  处:《Cybersecurity》2025年第1期1-21,共21页网络空间安全科学与技术(英文)

摘  要:The rapid expansion of intra-vehicle networks has increased the number of threats to such networks.Most modern vehicles implement various physical and data-link layer technologies.Vehicles are becoming increasingly autonomous and connected.Controller area network(CAN)is a serial bus system that is used to connect sensors and controllers(electronic control units-ECUs)within a vehicle.ECUs vary widely in processing power,storage,memory,and connectivity.The goal of this research is to design,implement,and test an efficient and effective intrusion detection system for intra-vehicle CANs.Classic cryptographic approaches are resource-intensive and increase processing delay,thereby not meeting CAN latency requirements.There is a need for a system that is capable of detecting intrusions in almost real-time with minimal resources.Our research proposes a long short-term memory(LSTM)network to detect anomalies and a decision engine to detect intrusions by using multiple contextual parameters.We have tested our anomaly detection algorithm and our decision engine using data from real automobiles.We present the results of our experiments and analyze our findings.After detailed evaluation of our system,we believe that we have designed a vehicle security solution that meets all the outlined requirements and goals.

关 键 词:Controller area network Deep learning Intrusion detection system Long short-term memory Machine learning Recurrent neural networks 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象