检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯雪雯 赵彬[1] 马海涛[1] 吴佳玉 吉日嘎兰图[2] FENG Xue-wen;ZHAO Bin;MA Hai-tao;WU Jia-yu;Jirigalantu(School of Electrical&Electronic Engineering,Changchun University of Technology,Changchun 130012,China;Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China)
机构地区:[1]长春工业大学电气与电子工程学院,长春130012 [2]中国科学院长春光学精密机械与物理研究所,长春130033
出 处:《科学技术与工程》2025年第7期2784-2791,共8页Science Technology and Engineering
基 金:吉林省科技发展计划(20210201104GX);国家自然科学基金(62075216)。
摘 要:为了提高单晶金刚石刀具刃磨方向在线识别精度,以及解决刃磨监测中单一传感器采集信息有限的问题,提出一种基于多信息融合与粒子群优化(particle swarm optimization, PSO)算法优化反向传播(back propagation, BP)神经网络的单晶金刚石刀具刃磨方向在线识别方法。通过采集刃磨过程中的振动信号和声发射(acoustic emission, AE)信号,采用小波包分解法分析刀具振动信号,得出与刀具刃磨方向强相关的特征频段,采用参数分析法来分析声发射信号,得出特征参数。将振动信号特征频段能量值和声发射信号特征参数作为识别刀具刃磨方向的特征参量。将特征参量作为BP神经网络模型输入进行融合,在线识别刀具刃磨方向。针对BP神经网络的容易陷入局部最小值的缺点,利用PSO算法优化神经网络权值和阈值,有效解决陷入局部最小值的问题。实验结果表明,经PSO-BP与多信息融合对单晶金刚石刀具刃磨方向在线识别准确率得到了有效提高,达到85%的准确率,为单晶金刚石刀具刃磨方向在线识别提供了一种新方法。In order to improve the online recognition accuracy of the grinding direction of single crystal diamond tools and address the limitation of acquiring limited information from a single sensor in grinding monitoring,this study a method for online recognition of the grinding direction of single crystal diamond tools based on multi-information fusion and particle swarm optimization(PSO)algorithm for optimizing the BP(back propagation)neural network was proposed.Vibration signals and acoustic emission(AE)signals were collected during the grinding process.The wavelet packet decomposition method was applied to analyze the vibration signals of the tool and identify the characteristic frequency bands strongly correlated with the grinding direction.The parameter analysis method was used to analyze the AE signals and extract the characteristic parameters.The energy values of the characteristic frequency bands in the vibration signals and the characteristic parameters of the AE signals were taken as the feature parameters for identifying the grinding direction of the tool.These feature parameters were then used as inputs to the BP neural network model for fusion and online recognition of the grinding direction.To overcome the disadvantage of the BP neural network easily getting stuck in local minima,the PSO algorithm was utilized to optimize the weights and thresholds of the neural network,effectively solving the problem of local minima.The experimental results show that the accuracy of online identification of the grinding direction of single crystal diamond tools is effectively improved by PSO-BP and multi-information fusion,reaching an accuracy of 85%,providing a new method for online identification of the grinding direction of single crystal diamond tools.
关 键 词:单晶金刚石刀具 刃磨方向 多信息融合 在线识别 PSO-BP
分 类 号:TH122[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.110.162