检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘天[1,2] 赵婧 吴杨[4] 黄淑琼[4] LIU Tian;ZHAO Jing;WU Yang;HUANG Shuqiong(Institute for Communicable Disease Control and Prevention,Jingzhou Municipal Center for Disease Control and Prevention,Jingzhou,Hubei 434000,China;Public Health Research Center,Yangtze University,Jingzhou,Hubei 434000,China;Chinese Center for Disease Control and Prevention,Beijing 102206,China;Hubei Provincial Center for Disease Control and Prevention,Wuhan,Hubei 430079,China)
机构地区:[1]荆州市疾病预防控制中心传染病防治所,湖北荆州434000 [2]长江大学公共卫生研究中心,湖北荆州434000 [3]中国疾病预防控制中心,北京102206 [4]湖北省疾病预防控制中心,湖北武汉430079
出 处:《实用预防医学》2024年第11期1404-1409,共6页Practical Preventive Medicine
基 金:中国疾控中心应急综合业务管理(23170101)
摘 要:新型冠状病毒疫情后,如何利用疾病监测数据建立预测预警是疾病监测领域的重要研究课题。随着计算机技术的迅猛发展,近年来各类新兴时间序列模型快速增加,尚缺乏对各类疾病监测时间序列预测模型的概述。本研究对近年来国内外主要的疾病监测时间序列预测模型进行梳理,供读者了解各类疾病监测时间序列预测模型基本原理,种类,实现步骤以及模型评价指标;同时也介绍了常用的建模软件,为读者详细、全面地介绍了当前国内外疾病监测时间序列预测模型应用进展,为更好地建立预测预警模型提供重要参考。After the SARS-CoV-2 pandemic,how to use disease surveillance data to establish prediction and early warning is an important research topic in the field of disease surveillance.With the rapid development of computer technology,various emerging time series models have been rapidly increasing in recent years,but there is still a lack of an overview of various disease monitoring time series prediction models.This study reviews the main disease monitoring time series prediction models both domestically and internationally in recent years and provides readers with a basic understanding of the principles,classification methods,implementation steps,and model evaluation indicators of various disease monitoring time series prediction models.At the same time,this study introduces the main software commonly used for modeling,provides readers with a detailed and comprehensive introduction to the current application progress in disease monitoring time series prediction models both domestically and internationally,and provides important references for better establishing prediction and early warning models.
分 类 号:R195[医药卫生—卫生统计学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44