膝关节置换术治疗骨关节炎的疗效及远期并发症的列线图模型研究  

A nomogram model of the efficacy of knee arthroplasty in the treatment of osteoarthritis and long-term complications

在线阅读下载全文

作  者:李裕强 陈泳添 黄妙宁 何启新 苏松森 LI Yu-qiang;CHEN Yong-tian;HUANG Miao-ning(Department of Orthopedics,Marina Bay Central Hospital,Dongguan 523900,China)

机构地区:[1]东莞市滨海湾中心医院骨科,523900

出  处:《中国现代药物应用》2025年第4期33-37,共5页Chinese Journal of Modern Drug Application

基  金:东莞市社会发展科技项目(项目编号:20211800900232)。

摘  要:目的探讨膝关节置换术后患者局部并发症情况,构建预测膝关节置换术患者预后的模型,为预测膝关节置换术后并发症、指导患者术后康复提供重要参考依据。方法本研究利用2018年6月1日~2021年10月1日东莞市滨海湾中心医院80例接受膝关节置换术的患者作为训练集构建列线图,并利用2021年11月1日~2023年2月1日东莞市滨海湾中心医院的80例接受膝关节置换术的患者作为验证集验证列线图模型。临床主要结局包括4种可在90 d内发生的局部并发症:再次手术、感染、手术后72 h内需要输注≥4单位红细胞的出血和周围神经损伤。模型变量包括术前变量:性别、年龄、体质量指数(BMI)、美国麻醉医师协会(ASA)分级、初诊断、麻醉类型、血清白蛋白、血脂、骨质疏松、血红蛋白(Hb)、体表面积(BSA)和年龄调整查尔森合并症指数(ACCI)评分,术中变量:手术时间、止血带使用时间、最低心率、最低平均动脉压(MAP)和估计术中失血量(EIBL)。采用单因素COX和多因素COX回归构建临床预测模型并开发列线图。使用Harrell一致性指数(C指数)、受试者工作特性曲线(ROC)的曲线下面积(AUC)评估列线图的性能。结果使用单因素COX分析对收集的17个因素进行分析,结果显示有6个系数为非零的潜在预测因子:ASA分级、血清白蛋白、EIBL、止血带使用时间、ACCI评分和手术时间(P<0.05)。多因素COX分析显示,有4个系数为非零的潜在预测因子:ASA分级、EIBL、止血带使用时间、ACCI评分(P<0.05)。列线图模型共纳入了4个显著的预后因素:ACCI评分、ASA分级、止血带使用时间和EIBL。该模型表现出良好的判别力,在训练集中,C指数为0.819;在验证集中,C指数仍高达0.751[95%CI=(0.597,0.885)]。训练集的AUC为0.868,验证集的AUC高达0.779。列线图显示EIBL和止血带使用时间的贡献最大,其次是ASA分级和ACCI评分。在列线图中,这些变量的�Objective To investigate the local complications of patients after knee arthroplasty,construct a prognostic model for patients undergoing knee arthroplasty,and provide an important reference for predicting the postoperative complications and guiding the postoperative rehabilitation of patients.Methods In this study,80 patients who received knee arthroplasty from June 1,2018 to October 1,2021 in Dongguan Marina Bay Central Hospital were used as the training set to construct a nomogram,and 80 patients who received knee arthroplasty from November 1,2021 to February 1,2023 in Dongguan Marina Bay Central Hospital were used as the validation set to validate the nomogram model.Adverse outcomes included 4 local complications that could occur within 90 d:reoperation,infection,bleeding requiring transfusion of≥4 units of red blood cells within 72 h of surgery,and peripheral nerve damage.Model variables included preoperative variables:gender,age,body mass index(BMI),American Society of Anethesiologists(ASA)grade,initial diagnosis,type of anesthesia,serum albumin,lipids,osteoporosis,hemoglobin(Hb),body surface area(BSA),and age-adjusted Charlson Comorbidity index(ACCI)score,and intraoperative variables:operation time,duration of tourniquet use,minimum heart rate,lowest mean arterial pressure,and estimated intraoperative blood loss(EIBL).In this paper,univariate COX and multivariate COX regression were used to construct a clinical prediction model and develop a nomogram.The performance of the nomogram was evaluated using the Harrell concordance index(C-index),the area under the receiver operating characteristic(ROC)curve.Results Univariate COX analysis was used to analyze the 17 factors collected,and the results showed that there were six potential predictors with non-zero coefficients:ASA grade,serum albumin,EIBL,duration of tourniquet use,ACCI score,and operation time(P<0.05).Multivariate COX analysis showed that there were four potential predictors with non-zero coefficients:ASA grade,EIBL,duration of tourniquet use,and

关 键 词:膝关节置换术 骨关节炎 列线图 疗效 并发症 

分 类 号:R687.4[医药卫生—骨科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象