基于双对数模型的电力消费弹性系数均值计算方法研究  

Research on the calculation method of the mean value of power consumption elasticity coefficient based on double logarithmic model

作  者:黄云贵 兰珊 HUANG Yungui;LAN Shan(Research Center for Reform and Development,China Southern Power Grid,Guangzhou 510663,China;China Southern Power Grid International Co.,Ltd.,Guangzhou 510663,China)

机构地区:[1]南方电网改革发展研究中心,广东广州510663 [2]南方电网国际有限公司,广东广州510663

出  处:《电力需求侧管理》2025年第2期113-118,共6页Power Demand Side Management

基  金:中国南方电网有限责任公司软课题项目(2022A0210)。

摘  要:电力消费弹性系数均值是反映某一区域电力消费与经济发展之间中长期关系的重要指标,是开展电力需求预测的重要依据。目前,国内对于电力消费弹性系数均值的计算大多采用算术平均值法,该方法较容易受极端年份数据波动的影响,存在较大误差。为求得更为准确的电力消费弹性系数均值,提出基于双对数模型的时间序列拟合回归方法,该方法选取“地区生产总值”和“全社会用电量”两个样本数据建立时间序列,通过变量替换,将复杂的非线性关系转换为线性关系进行回归拟合分析。通过对回归模型开展检验并与几何平均值法算例进行比较,从统计学角度说明,基于双对数模型计算所得的电力消费弹性系数均值误差更小、可靠性更高。The mean of power consumption elasticity coefficient is an important indicator that reflects the relationship between power consumption and economic development,and used for power demand forecasting.At present,the calculation of the mean in China mostly adopts the arithmetic mean method,which is more susceptible to extreme year data fluctuations,and cannot avoid significant errors.To obtain a more accurate mean,a time series fitting regression method based on the double logarithmic model is proposed.which selects“Gross Domestic Product”and“Electricity Consumption of the Whole Society”as samples to establish time series.and performs regression fitting analysis on them under the framework of linear relationships.By conducting tests on the regression model and comparing it with the geometric mean method example,it is statistically demonstrated that the mean error of the power consumption elasticity coefficient calculated based on the double logarithmic model is smaller and more reliable.

关 键 词:电力消费弹性系数 双对数模型 均值 计算方法 

分 类 号:TM727[电气工程—电力系统及自动化] TK18[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象