检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩鹏 黄韫栀 任彩月 程竞仪[2] 徐军[1] HAN Peng;HUANG Yunzhi;REN Caiyue;CHENG Jingyi;XU Jun(Institute for Artificial Intelligence in Medicine,School of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China;Department of Nuclear Medicine,Shanghai Medical College of Fudan University,Fudan University Shanghai Cancer Center,Shanghai 200032,China)
机构地区:[1]南京信息工程大学人工智能学院智慧医疗研究院,江苏南京210044 [2]复旦大学附属肿瘤医院复旦大学上海医学院核医学科,上海200032
出 处:《计算机工程》2025年第3期293-299,共7页Computer Engineering
基 金:国家自然科学基金(61771249);上海市扬帆计划(21YF1444300)。
摘 要:准确的肿瘤亚区分割是乳腺癌异质性表征的关键,而这种表征是了解乳腺癌化疗反应的关键。传统的阈值分割在功能性肿瘤亚区的区分上存在不足,为此,提出一种改进的分割(GR)方法,该方法基于异质性影像组学特征,包括纹理信息、强度信息、形状信息,通过高斯混合聚类实现功能性亚区的精准分割。基于GR分割,设计双分支双任务分类模型(DDCN),预测新辅助化疗疗效,利用得到的亚区来更好地提取肿瘤内部异质性的特征,并结合文本信息来评估疗效。实验结果表明,所提放射组学分割模型在不同功能亚区的识别上表现出色,在剪影系数和方差比指数上都取得了良好的效果。DDCN模型融合了不同亚区的特征,消融实验结果表明,在受试者工作特征曲线下的面积(AUC)、准确率等指标上DDCN都取得了良好的结果。总体而言,GR在肿瘤亚区分割上比传统的阈值分割效果更优,而DDCN模型在评估新辅助化疗疗效方面具有广泛的应用价值。Accurate segmentation of tumor subregions is critical for characterizing the heterogeneity of breast cancer,a key factor in understanding the response to chemotherapy.Traditional threshold segmentation methods are inadequate for distinguishing functional tumor subregions.To address this,an adaptive segmentation approach called GR has been proposed.This algorithm leverages heterogeneous image omics features,including texture,strength,and shape information,using Gaussian mixture clustering to achieve precise functional subregion segmentation.Building on this,a Dual-branch Dual-task Classification Model(DDCN)was developed to predict the efficacy of neoadjuvant chemotherapy.This model utilizes the segmented subregion information to enhance feature extraction,quantifying intra-tumor heterogeneity and evaluating therapeutic outcomes through textual information.Experimental results highlight the efficacy of the radiomics-based segmentation model in identifying distinct functional subregions,outperforming traditional methods in metrics such as the silhouette coefficient and the calinski-harabasz index.Additionally,the DDCN model combines features from various subregions,achieving superior performance in metrics such as the Area Under the receiver operating characteristic Curve(AUC)and accuracy.Overall,the GR segmentation approach proves to be more effective than traditional threshold segmentation for tumor subregion analysis.The DDCN model further enhances the evaluation of neoadjuvant chemotherapy efficacy,demonstrating significant potential for broader clinical applications.
关 键 词:肿瘤异质性 聚类分割 深度学习 新辅助化疗 医学影像
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.74.181