检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭俊辰 马御棠 相艳[1,3] 赵学东 郭军军 GUO Junchen;MA Yutang;XIANG Yan;ZHAO Xuedong;GUO Junjun(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,Yunnan,China;Electric Power Research Institute of Yunnan Power Grid Co.,Ltd.,Kunming 650217,Yunnan,China;Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming 650500,Yunnan,China)
机构地区:[1]昆明理工大学信息工程与自动化学院,云南昆明650500 [2]云南电网有限责任公司电力科学研究院,云南昆明650217 [3]昆明理工大学云南省人工智能重点实验室,云南昆明650500
出 处:《计算机工程》2025年第3期334-341,共8页Computer Engineering
基 金:云南省重大科技专项计划项目(202202AD080004,202202AE090008);国家自然科学基金(62266025)。
摘 要:实体链接旨在将自然语言文本中的提及链接到知识库中相应的目标实体,主要面临提及和候选实体的表征能力有限,导致候选实体精确排序困难的问题,而现有的知识库扩展和图嵌入等提高表征能力的方法依赖外部数据或知识,限制了其应用。提出一种实体链接中提及和候选实体精确排序的方法,通过结合提及上下文构建prompt问句,将提及和候选实体相似度计算转化为基于prompt问句的打分模式。通过预训练模型微调打分器,得到提及和候选实体相似度的打分,并综合候选实体发现阶段的得分,以筛选出更准确的目标实体。这一过程无需额外的知识,能够融合上下文信息,从而更准确地衡量提及和实体之间的相似度。在两个公共数据集上将该模型与基线模型进行实验比较,结果表明,相比次优模型,该模型Acc@1值分别提升了0.88和0.41百分点。Entity Linking(EL)aims to link mentions in natural language texts to corresponding target entities in the knowledge base.It mainly faces the problem of limited representation capabilities of mentions and candidate entities,which complicates the accurate ranking of candidate entities.Existing knowledge is based on expand methods,such as graph embedding,to improve representation capabilities by relying on external data or knowledge,which limits their applications.This study proposes a method for accurately sorting mentions and candidate entities in entity links,thereby constructing a prompt question by considering the mention context.The similarity calculation of mentions and candidate entities is converted into a scoring model based on the prompt question.The score is fine-tuned using the pretrained model,to obtain a similarity score between mentions and candidate entities.The scores in the candidate entity discovery phase are combined to filter out more accurate target entities.This process requires no additional knowledge and incorporates contextual information to accurately measure the similarity between mentions and entities.An experimental comparison has been conducted between the proposed and baseline models on two public datasets.The Acc@1 values of the proposed model has increased by 0.88 and 0.41 percentage points,respectively,with respect to those of the suboptimal model.
关 键 词:实体链接 prompt问句 预训练模型 实体消歧 精确排序
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49