A Novel Dynamic Residual Self-Attention Transfer Adaptive Learning Fusion Approach for Brain Tumor Diagnosis  

作  者:Tawfeeq Shawly Ahmed A.Alsheikhy 

机构地区:[1]Electrical Engineering Department,Faculty of Engineering at Rabigh,King Abdulaziz University,Jeddah,21981,Saudi Arabia [2]Electrical Engineering Department,College of Engineering,Northern Border University,Arar,91431,Saudi Arabia

出  处:《Computers, Materials & Continua》2025年第3期4161-4179,共19页计算机、材料和连续体(英文)

基  金:funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,Saudi Arabia under Grant No.(GPIP:1055-829-2024).

摘  要:A healthy brain is vital to every person since the brain controls every movement and emotion.Sometimes,some brain cells grow unexpectedly to be uncontrollable and cancerous.These cancerous cells are called brain tumors.For diagnosed patients,their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans.Nowadays,Physicians and radiologists rely on Magnetic Resonance Imaging(MRI)pictures for their clinical evaluations of brain tumors.These evaluations are time-consuming,expensive,and require expertise with high skills to provide an accurate diagnosis.Scholars and industrials have recently partnered to implement automatic solutions to diagnose the disease with high accuracy.Due to their accuracy,some of these solutions depend on deep-learning(DL)methodologies.These techniques have become important due to their roles in the diagnosis process,which includes identification and classification.Therefore,there is a need for a solid and robust approach based on a deep-learning method to diagnose brain tumors.The purpose of this study is to develop an intelligent automatic framework for brain tumor diagnosis.The proposed solution is based on a novel dense dynamic residual self-attention transfer adaptive learning fusion approach(NDDRSATALFA),carried over two implemented deep-learning networks:VGG19 and UNET to identify and classify brain tumors.In addition,this solution applies a transfer learning approach to exchange extracted features and data within the two neural networks.The presented framework is trained,validated,and tested on six public datasets of MRIs to detect brain tumors and categorize these tumors into three suitable classes,which are glioma,meningioma,and pituitary.The proposed framework yielded remarkable findings on variously evaluated performance indicators:99.32%accuracy,98.74%sensitivity,98.89%specificity,99.01%Dice,98.93%Area Under the Curve(AUC),and 99.81%F1-score.In addition,a comparative analysis with recent state-of-the-art methods was performed and according t

关 键 词:Brain tumor deep learning transfer learning RESIDUAL self-attention VGG19 UNET 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象