检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Haydar Abdulameer Marhoon Rafid Sagban Atheer Y.Oudah Saadaldeen Rashid Ahmed
机构地区:[1]Information and Communication Technology Research Group,Scientific Research Center,Al-Ayen University,Thi-Qar,64011,Iraq [2]College of Computer Sciences and Information Technology,University of Kerbala,Karbala,56001,Iraq [3]Enginerring Technical College,Al-Ayen University,Thi-Qar,64011,Iraq [4]Information Technology College,University of Babylon,Hilla,51002,Iraq [5]Department of Computer Science,College of Education for Pure Science,University ofThi-Qar,Nasiriyah,64001,Iraq [6]Artificial Intelligence Engineering Department,College of Engineering,Al-Ayen University,Thi-Qar,64001,Iraq [7]Department of Computer Science,Bayan University,Erbil,Kurdistan,44001,Iraq
出 处:《Computers, Materials & Continua》2025年第3期4181-4218,共38页计算机、材料和连续体(英文)
摘 要:In order to address the critical security challenges inherent to Wireless Sensor Networks(WSNs),this paper presents a groundbreaking barrier-based machine learning technique.Vital applications like military operations,healthcare monitoring,and environmental surveillance increasingly deploy WSNs,recognizing the critical importance of effective intrusion detection in protecting sensitive data and maintaining operational integrity.The proposed method innovatively partitions the network into logical segments or virtual barriers,allowing for targeted monitoring and data collection that aligns with specific traffic patterns.This approach not only improves the diversit.There are more types of data in the training set,and this method uses more advanced machine learning models,like Convolutional Neural Networks(CNNs)and Long Short-Term Memory(LSTM)networks together,to see coIn our work,we used five different types of machine learning models.These are the forward artificial neural network(ANN),the CNN-LSTM hybrid models,the LR meta-model for linear regression,the Extreme Gradient Boosting(XGB)regression,and the ensemble model.We implemented Random Forest(RF),Gradient Boosting,and XGBoost as baseline models.To train and evaluate the five models,we used four possible features:the size of the circular area,the sensing range,the communication range,and the number of sensors for both Gaussian and uniform sensor distributions.We used Monte Carlo simulations to extract these traits.Based on the comparison,the CNN-LSTM model with Gaussian distribution performs best,with an R-squared value of 99%and Root mean square error(RMSE)of 6.36%,outperforming all the other models.
关 键 词:Intrusion detection system(IDS) hybrid models of CNN-LSTM WSN extreme gradient boosting(XGBoost)regressor ensemble model
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.20.207