Improving Robustness for Tag Recommendation via Self-Paced Adversarial Metric Learning  

作  者:Zhengshun Fei Jianxin Chen Gui Chen Xinjian Xiang 

机构地区:[1]School of Automation and Electrical Engineering,Zhejiang University of Science and Technology,Hangzhou,310023,China [2]Bingwu(Ningbo)Intelligent Equipment Co.,Ltd.,Ningbo,315600,China

出  处:《Computers, Materials & Continua》2025年第3期4237-4261,共25页计算机、材料和连续体(英文)

基  金:supported by the Key Research and Development Program of Zhejiang Province(No.2024C01071);the Natural Science Foundation of Zhejiang Province(No.LQ15F030006).

摘  要:Tag recommendation systems can significantly improve the accuracy of information retrieval by recommending relevant tag sets that align with user preferences and resource characteristics.However,metric learning methods often suffer from high sensitivity,leading to unstable recommendation results when facing adversarial samples generated through malicious user behavior.Adversarial training is considered to be an effective method for improving the robustness of tag recommendation systems and addressing adversarial samples.However,it still faces the challenge of overfitting.Although curriculum learning-based adversarial training somewhat mitigates this issue,challenges still exist,such as the lack of a quantitative standard for attack intensity and catastrophic forgetting.To address these challenges,we propose a Self-Paced Adversarial Metric Learning(SPAML)method.First,we employ a metric learning model to capture the deep distance relationships between normal samples.Then,we incorporate a self-paced adversarial training model,which dynamically adjusts the weights of adversarial samples,allowing the model to progressively learn from simpler to more complex adversarial samples.Finally,we jointly optimize the metric learning loss and self-paced adversarial training loss in an adversarial manner,enhancing the robustness and performance of tag recommendation tasks.Extensive experiments on the MovieLens and LastFm datasets demonstrate that SPAML achieves F1@3 and NDCG@3 scores of 22%and 32.7%on the MovieLens dataset,and 19.4%and 29%on the LastFm dataset,respectively,outperforming the most competitive baselines.Specifically,F1@3 improves by 4.7%and 6.8%,and NDCG@3 improves by 5.0%and 6.9%,respectively.

关 键 词:Tag recommendation metric learning adversarial training self-paced adversarial training ROBUSTNESS 

分 类 号:H31[语言文字—英语]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象