检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dongdong Zhang Chunping Wang Huiying Wang Qiang Fu
机构地区:[1]Army Engineering University of PLA,Shijiazhuang,050003,China
出 处:《Computers, Materials & Continua》2025年第3期4319-4338,共20页计算机、材料和连续体(英文)
摘 要:Video camouflaged object detection(VCOD)has become a fundamental task in computer vision that has attracted significant attention in recent years.Unlike image camouflaged object detection(ICOD),VCOD not only requires spatial cues but also needs motion cues.Thus,effectively utilizing spatiotemporal information is crucial for generating accurate segmentation results.Current VCOD methods,which typically focus on exploring motion representation,often ineffectively integrate spatial and motion features,leading to poor performance in diverse scenarios.To address these issues,we design a novel spatiotemporal network with an encoder-decoder structure.During the encoding stage,an adjacent space-time memory module(ASTM)is employed to extract high-level temporal features(i.e.,motion cues)from the current frame and its adjacent frames.In the decoding stage,a selective space-time aggregation module is introduced to efficiently integrate spatial and temporal features.Additionally,a multi-feature fusion module is developed to progressively refine the rough prediction by utilizing the information provided by multiple types of features.Furthermore,we incorporate multi-task learning into the proposed network to obtain more accurate predictions.Experimental results show that the proposed method outperforms existing cutting-edge baselines on VCOD benchmarks.
关 键 词:Video camouflaged object detection spatiotemporal information feature fusion multi-task learning
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49