DIEONet:Domain-Invariant Information Extraction and Optimization Network for Visual Place Recognition  

作  者:Shaoqi Hou Zebang Qin Chenyu Wu Guangqiang Yin Xinzhong Wang Zhiguo Wang 

机构地区:[1]School of Computer Science and Technology,Xinjiang University,Urumqi,830046,China [2]School of Information and Software Engineering,University of Electronic Science and Technology ofChina,Chengdu,611731,China [3]Institute of Public Security,Kash Institute of Electronics and Information Industry,Kashi,844000,China

出  处:《Computers, Materials & Continua》2025年第3期5019-5033,共15页计算机、材料和连续体(英文)

基  金:supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region under grant number 2022D01B186.

摘  要:Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and relocation.It is well known that previous VPR algorithms emphasize the extraction and integration of general image features,while ignoring the mining of salient features that play a key role in the discrimination of VPR tasks.To this end,this paper proposes a Domain-invariant Information Extraction and Optimization Network(DIEONet)for VPR.The core of the algorithm is a newly designed Domain-invariant Information Mining Module(DIMM)and a Multi-sample Joint Triplet Loss(MJT Loss).Specifically,DIMM incorporates the interdependence between different spatial regions of the feature map in the cascaded convolutional unit group,which enhances the model’s attention to the domain-invariant static object class.MJT Loss introduces the“joint processing of multiple samples”mechanism into the original triplet loss,and adds a new distance constraint term for“positive and negative”samples,so that the model can avoid falling into local optimum during training.We demonstrate the effectiveness of our algorithm by conducting extensive experiments on several authoritative benchmarks.In particular,the proposed method achieves the best performance on the TokyoTM dataset with a Recall@1 metric of 92.89%.

关 键 词:Visual place recognition domain-invariant information mining module multi-sample joint triplet loss 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象