Research on Optimization of Hierarchical Quantum Circuit Scheduling Strategy  

在线阅读下载全文

作  者:Ziao Han Hui Li Kai Lu Shujuan Liu Mingmei Ju 

机构地区:[1]School of Computer and Information Engineering,Harbin University of Commerce,Heilongjiang,150028,China

出  处:《Computers, Materials & Continua》2025年第3期5097-5113,共17页计算机、材料和连续体(英文)

基  金:funded by the Natural Science Foundation of Heilongjiang Province(Grant No.LH2022F035);the Cultivation Programme for Young Innovative Talents in Ordinary Higher Education Institutions of Heilongjiang Province(Grant No.UNPYSCT-2020212);the Cultivation Programme for Young Innovative Talents in Scientific Research of Harbin University of Commerce(Grant No.2023-KYYWF-0983).

摘  要:Traditional quantum circuit scheduling approaches underutilize the inherent parallelism of quantum computation in the Noisy Intermediate-Scale Quantum(NISQ)era,overlook the inter-layer operations can be further parallelized.Based on this,two quantum circuit scheduling optimization approaches are designed and integrated into the quantum circuit compilation process.Firstly,we introduce the Layered Topology Scheduling Approach(LTSA),which employs a greedy algorithm and leverages the principles of topological sorting in graph theory.LTSA allocates quantum gates to a layered structure,maximizing the concurrent execution of quantum gate operations.Secondly,the Layerwise Conflict Resolution Approach(LCRA)is proposed.LCRA focuses on utilizing directly executable quantum gates within layers.Through the insertion of SWAP gates and conflict resolution checks,it minimizes conflicts and enhances parallelism,thereby optimizing the overall computational efficiency.Experimental findings indicate that LTSA and LCRA individually achieve a noteworthy reduction of 51.1%and 53.2%,respectively,in the number of inserted SWAP gates.Additionally,they contribute to a decrease in hardware gate overhead by 14.7%and 15%,respectively.Considering the intricate nature of quantum circuits and the temporal dependencies among different layers,the amalgamation of both approaches leads to a remarkable 51.6%reduction in inserted SWAP gates and a 14.8%decrease in hardware gate overhead.These results underscore the efficacy of the combined LTSA and LCRA in optimizing quantum circuit compilation.

关 键 词:Quantum circuit scheduling layered topology scheduling approach(LTSA) layerwise conflict resolu-tion approach(LCRA) quantum computing quantum circuit compilation 

分 类 号:O41[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象