Blur-Deblur Algorithm for Pressure-Sensitive Paint Image Based on Variable Attention Convolution  

在线阅读下载全文

作  者:Ruizhe Yu Tingrui Yue Lei Liang Zhisheng Gao 

机构地区:[1]School of Computer and Software Engineering,Xihua University,Chengdu,610039,China [2]College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,China [3]Low Speed Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang,621000,China

出  处:《Computers, Materials & Continua》2025年第3期5239-5256,共18页计算机、材料和连续体(英文)

基  金:supported by the National Natural Science Foundation of China(No.12202476).

摘  要:In the PSP(Pressure-Sensitive Paint),image deblurring is essential due to factors such as prolonged camera exposure times and highmodel velocities,which can lead to significant image blurring.Conventional deblurring methods applied to PSP images often suffer from limited accuracy and require extensive computational resources.To address these issues,this study proposes a deep learning-based approach tailored for PSP image deblurring.Considering that PSP applications primarily involve the accurate pressure measurements of complex geometries,the images captured under such conditions exhibit distinctive non-uniform motion blur,presenting challenges for standard deep learning models utilizing convolutional or attention-based techniques.In this paper,we introduce a novel deblurring architecture featuring multiple DAAM(Deformable Ack Attention Module).These modules provide enhanced flexibility for end-to-end deblurring,leveraging irregular convolution operations for efficient feature extraction while employing attention mechanisms interpreted as multiple 1×1 convolutions,subsequently reassembled to enhance performance.Furthermore,we incorporate a RSC(Residual Shortcut Convolution)module for initial feature processing,aimed at reducing redundant computations and improving the learning capacity for representative shallow features.To preserve critical spatial information during upsampling and downsampling,we replace conventional convolutions with wt(Haar wavelet downsampling)and dysample(Upsampling by Dynamic Sampling).This modification significantly enhances high-precision image reconstruction.By integrating these advanced modules within an encoder-decoder framework,we present the DFDNet(Deformable Fusion Deblurring Network)for image blur removal,providing robust technical support for subsequent PSP data analysis.Experimental evaluations on the FY dataset demonstrate the superior performance of our model,achieving competitive results on the GOPRO and HIDE datasets.

关 键 词:Pressure-sensitive paint deep learning image deblurring typeset variable attention convolution 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象