检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林朋[1] 孙成 任珂 刘育林 李阳 LIN Peng;SUN Cheng;REN Ke;LIU Yulin;LI Yang(College of Geosciences and Surveying Engineering,China University of Mining and Technology-Beijing,Beijing 100083,China;School of Remote Sensing Science and Technology,Aerospace Information Technology University,Jinan Shandong 250299,China)
机构地区:[1]中国矿业大学(北京)地球科学与测绘工程学院,北京100083 [2]空天信息大学(筹)遥感科学与技术学院,山东济南250299
出 处:《矿业科学学报》2025年第1期57-69,共13页Journal of Mining Science and Technology
基 金:国家重点研发计划(2023YFC3008902)。
摘 要:为进一步提高地下断层识别准确率和解释效率,使用极限梯度提升树(XGBoost)机器学习算法对煤层断层进行智能识别,并结合粒子群算法(PSO)优化模型相关参数,构建基于PSO-XGBoost的断层构造识别模型。建立正演模型对PSO-XGBoost模型进行检验,并基于滇东矿区采集的实际数据对比分析PSO-XGBoost模型与PSO-RF、PSO-SVM模型的分类预测性能,选择准确率和对数损失值作为评价分类器预测模型的主要指标评价各模型的准确度。结果表明,基于PSO-XGBoost的模型在断层构造识别中展现出较高的准确率和更好的稳定性。In order to further improve the accuracy and efficiency of underground fault identification,an intelligent fault recognition model based on the extreme gradient boosting tree(XGBoost)machine learning algorithm was constructed for coal seam faults,combined with the particle swarm optimization(PSO)algorithm to optimize the model's related parameters.A forward model was established to verify the PSO-XGBoost model,and the classification prediction performance of the PSO-XGBoost model was compared with that of the PSO-RF and PSO-SVM models based on actual data collected from the Diandong mining area.The accuracy rate and log loss value were selected as the main evaluation indicators to evaluate the accuracy of the classification prediction models for each model.The results show that the PSO-XGBoost model has a high accuracy in fault structure identification;the PSO-XGBoost model has higher accuracy and better stability in fault identification.
关 键 词:断层识别 XGBoost PSO 机器学习 参数优化
分 类 号:TD163.1[矿业工程—矿山地质测量]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49