检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙超 林朋[2] 刘育林 王秀东 徐东晶 SUN Chao;LIN Peng;LIU Yulin;WANG Xiudong;XU Dongjing(Shandong Provincial Research Institute of Coal Geology Planning and Exploration,Jinan Shandong 250104,China;School of Geoscience and Surveying Engineering,China University of Mining Technology-Beijing,Beijing 100083,China;College of Earth Science and Engineering,Shandong University of Science and Technology,Qingdao Shandong 266590,China)
机构地区:[1]山东省煤田地质规划勘察研究院,山东济南250104 [2]中国矿业大学(北京)地球科学与测绘工程学院,北京100083 [3]山东科技大学地球科学与工程学院,山东青岛266590
出 处:《矿业科学学报》2025年第1期105-115,共11页Journal of Mining Science and Technology
基 金:国家重点研发计划专题(2022YFC2903705-03);山东省煤田地质局科研专项(鲁煤地科字(2022)57号);国家自然科学基金(52394191,42104139)。
摘 要:随机噪声是地震数据处理中常见的干扰之一。传统的随机噪声压制方法采用的是奇异值分解技术,但是其计算效率较低,难以适应大规模地震数据处理。为了提高随机噪声压制效率,提出一种基于压缩奇异值分解的随机噪声压制技术。该技术在计算奇异值时首先基于压缩感知理论对原始数据进行稀疏变换,然后将变换后的结果用于近似求解高维左右奇异向量和奇异值,避免对原始高维数据的直接处理,提高奇异值分解的准确性和计算效率。基于三维合成地震记录和实际数据对该技术的有效性和实用性进行验证,并与采用传统奇异值分解、随机奇异值分解的技术进行对比。结果表明:该技术能够有效压制地震数据中的随机噪声,同时有效信号得以增强突显;相对于传统和随机奇异值分解,压缩奇异值分解技术具有更高的计算效率,可大幅节约时间成本,并进一步提高信噪比。Random noise is one of the common background noises in seismic data,and its attenuation will directly affect the signal-to-noise ratio of seismic data,which is of great significance to improve the quality of seismic data.Low-rank approximation technique is a commonly used method to suppress ran-dom noise of seismic data.It converts frequency spatial domain data into the form of Hanke matrix,and uses singular value decomposition technique to reconstruct data by retaining large singular values,so as to achieve the purpose of rank reduction and suppress random noise.The method takes advantage of the low-rank nature of noiseless seismic data,which can be destroyed in the presence of random noise.However,traditional singular value decomposition technology has low computational efficiency,and seismic data generally consist of a large amount of datasets,so traditional singular value decomposition technology will inevitably lead to a large increase in time cost.In order to improve the efficiency of ran-dom noise suppression,a new singular value decomposition technique based on compressed sensing theory is proposed.The sparse representation of data is considered in the calculation of singular values,and the sparse representation of data is used to approximate the solution of high-dimensional singular vectors and singular values,so as to improve the accuracy and computational efficiency of singular val-ue decomposition.Compressed sensing theory makes full use of data sparsity,avoids direct processing of original high-dimensional data,and theoretically has high computational efficiency.Three-dimen-sional synthetic seismic records and field data examples are used to verify the validity and practicability of the proposed method,and comparisons with traditional and random singular value decomposition techniques are performed.The results show that the improved low-rank approximation technique can effectively suppress random noise in seismic data,and the effective signal can be enhanced and highlight-ed.Compared with traditional
分 类 号:TD163.1[矿业工程—矿山地质测量]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49