检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈灿森 刘巍 CHEN Cansen;LIU Wei(School of Information and Electronic Engineering,Zhejiang Gongshang University,Hangzhou 310000,China)
机构地区:[1]浙江工商大学信息与电子工程学院,杭州310000
出 处:《计算机工程与应用》2025年第6期118-127,共10页Computer Engineering and Applications
基 金:国家自然科学基金面上项目(62073125)。
摘 要:隧道盾构裂缝漏水问题的检测对于保障隧道结构的安全性和延长其使用寿命至关重要。随着目标检测技术的发展,先进的检测技术逐渐被应用于隧道盾构裂缝漏水区域的自动检测,以提高检测效率和精度。因此,为进一步提高裂缝漏水区域的检测精度并实现实时的隧道盾构裂缝漏水检测,在YOLOv8的基础上提出了目标检测算法Leakage-YOLO。该算法通过在检测颈中引入区域焦点注意力模块(regional spotlight attention),更好地融合全局与局部特征信息,增强对关键区域特征的提取能力,进而有效解决了裂缝漏水区域显著特征难以提取的问题。此外,通过改进检测头,提出一种新的SE-Head结构,进一步增强了对细节边缘特征的捕捉能力,有效改善了裂缝漏水区域定位不精确的问题。在真实场景的公开数据集的实验结果表明,改进后的算法相比原算法在AP、AP0.5、AP0.75上分别提高了4.7、4.9、6.7个百分点,并与其他主流算法对比,验证了所提的Leakage-YOLO的有效性和优越性。The detection of cracks and water leakage in tunnel shield linings is essential for ensuring the structural safety and extending the service life of tunnels.With the advancement of object detection technologies,advanced techniques have been increasingly applied to the automatic detection of cracks and leakage areas in tunnel shield linings to improve detection efficiency and precision.Therefore,to further improve the precision of detecting these areas and to achieve realtime detection,the Leakage-YOLO algorithm is proposed,based on YOLOv8.The algorithm introduces a regional spotlight attention(RSA)module into the detection neck,which better integrates global and local feature information,thereby enhancing the ability to extract key regional features.This effectively addresses the challenge of extracting significant features in crack and leakage areas.Additionally,by modifying the detection head,a novel SE-Head structure is proposed,further enhancing the ability to extract detailed edge features,effectively improving the precision of crack and leakage area localization.Experimental results on public datasets in real-world scenarios demonstrate that the improved algorithm outperforms the original algorithm with increases of 4.7,4.9,and 6.7 percentage points in AP,AP0.5,and AP0.75,respectively.Compared with other mainstream algorithms,the effectiveness and superiority of the Leakage-YOLO are further verified.
关 键 词:隧道盾构裂缝漏水检测 Leakage-YOLO 注意力机制 关键区域特征
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.233.20