检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田水承 涂鹏[1,2] 李红霞 TIAN Shuicheng;TU Peng;LI Hongxia(School of Safety Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;Institute of Security and Emergency Management,Xi’an University of Science and Technology,Xi’an 710054,China)
机构地区:[1]西安科技大学安全科学与工程学院,陕西西安710054 [2]西安科技大学安全与应急管理研究所,陕西西安710054
出 处:《煤矿安全》2025年第2期249-256,共8页Safety in Coal Mines
基 金:国家自然科学基金资助项目(51874237,U1904210);国家社会科学基金资助项目(20XGL025)。
摘 要:为分析综掘工作面光照环境对支护工脑疲劳的影响情况,准确识别综掘工作面支护工的脑疲劳状态,减少煤矿安全事故;设计了脑疲劳诱发实验,采集并分析了主客观数据;采用单因素方差分析法和配对样本T检验法提取了脑疲劳评价指标;使用支持向量机、K近邻、随机森林算法构建了综掘支护工脑疲劳识别模型,并建立混淆矩阵对各模型识别效果进行综合对比,选择出了最优识别模型。结果表明,准确率、反应时间、NASA-TLX值和O_(1)、O_(2)、O_(6)、O_(Z)、PO_(4)、PO_(8)、PO_(Z)、T_(8)8个电极通道的δ、θ、α、β节律能量值可作为综掘支护工脑疲劳评价指标;3类识别模型的识别准确率均较高,支持向量机的准确率为94.44%,K近邻的准确率为96.30%,随机森林的准确率为90.74%,因此基于K近邻算法的综掘支护工脑疲劳识别模型的识别效果最好。In order to analyze the influence of light environment on the brain fatigue of support workers,identify and alleviate the brain fatigue of support workers in fully mechanized excavation face,and reduce coal mine safety accidents,a brain fatigue induced experiment was designed,and the subjective and objective data were collected and analyzed.The evaluation indexes of brain fatigue were extracted by single factor analysis of variance and paired sample T-test.Support vector machine,K-nearest neighbor algorithm and random forest algorithm were used to construct the brain fatigue recognition model of the support worker in fully mechanized excavation face,and the confusion matrix was established to comprehensively compare the recognition effect of each model,and the optimal recognition model was selected.The results showed that the accuracy rate,response time,NASA-TLX value andδ,θ,αandβrhythm energy values of O_(1),O_(2),O_(6),O_(Z),PO_(4),PO_(8),PO_(Z)and T_(8) electrode channels could be used as the evaluation indexes of brain fatigue of the support workers in fully mechanized excavation face.The recognition accuracy of the three types of recognition models is high,the accuracy of support vector machine is 94.44%,the accuracy of K-nearest neighbor is 96.30%,and the accuracy of random forest is 90.74%.Therefore,the recognition model of brain fatigue of support workers in fully mechanized excavation face based on K-nearest neighbor algorithm has the best recognition effect.
分 类 号:TD79[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.145.188