检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李六杏[1] 王睿 LI Liuxing;WANG Rui(College of Information Engineering,Anhui University of Economics and Management,Hefei 230088,China)
机构地区:[1]安徽经济管理学院信息工程学院,安徽合肥230088
出 处:《安徽科技学院学报》2025年第2期90-95,共6页Journal of Anhui Science and Technology University
基 金:安徽省高校自然科学研究项目(2023AH052067)。
摘 要:本文探讨设施农业中传感器的智能布置,选择将传统随机布置若干个点位的传感器,通过数学建模,设计合适的适应度函数,并采取改进的遗传算法,按照自适应的选择、交叉、变异等操作产生新的种群,直到完成要求的迭代次数,得出最优的传感器智能布置方案。然后利用评估函数衡量遗传算法求得的布置方案,在大多数情况下相比贪心算法更优。本系统经过多轮迭代后最优值趋于稳定,种群中所有个体适应度函数值的平均值处于收敛状态,传感器布置更加科学合理。This paper explored the intelligent placement of sensors in facility agriculture.Instead of the traditional method of randomly placing sensors at several points,an appropriate fitness function through mathematical modeling was designed and adopt an improved genetic algorithm was adopted.New populations were generated through adaptive selection,crossover,mutation,and other operations until the required number of iterations was completed,yielding the optimal intelligent sensor placement scheme.Subsequently,an evaluation function was used to assess the placement scheme obtained by the genetic algorithm,which was found to be superior to the greedy algorithm in most cases.After multiple rounds of experiments,the optimal value of the system stabilized,and the average value of the fitness function among all individuals was in the population converges,indicating a more scientific and reasonable sensor placement.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40