检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨海军 马磊 徐永智 于聪 YANG Haijun;MA Lei;XU Yongzhi;YU Cong(Hebei Institute of Civil Engineering and Architecture,Zhangjiakou 075000,Hebei,China;Zhangjiakou Key Laboratory of Engineering Mechanical Analysis,Zhangjiakou 075000,Hebei,China)
机构地区:[1]河北建筑工程学院土木工程学院,河北张家口075000 [2]张家口市工程力学分析重点实验室,河北张家口075000
出 处:《力学季刊》2025年第1期118-129,共12页Chinese Quarterly of Mechanics
基 金:河北建筑工程学院研究生创新基金(XY2024016)。
摘 要:损伤识别是结构健康监测的重要环节之一.为了进一步提高损伤识别效率和精度,提出了基于改进的模态应变能指标和DBO-BP(Dung Beetle Optimization-Back Propagation)神经网络的两阶段结构损伤识别方法.首先采用改进的归一化模态应变能损伤指标进行结构的损伤定位分析,然后以结构的平均单元模态应变能变化率为输入参数,损伤单元刚度折减系数为输出参数,利用最优拉丁超立方方法改进后的蜣螂优化算法(Dung Beetle Optimization,DBO)优化BP(Back Propagation)神经网络权值和阈值,进行结构的损伤定量分析.以混凝土板结构和平面刚架结构作为算例进行损伤识别验证.结果表明,该方法损伤位置定位准确,损伤程度计算效率高,并且识别误差减小到了0.4%,损伤识别效果好.Damage identification is one of the most important aspects of structural health monitoring.In order to further improve the efficiency and accuracy of damage identification,a two-stage structural damage identification method based on the improved modal strain energy index and DBO-BP(Dung Beetle Optimization-Back Propagation)neural network is proposed.Firstly,the improved normalized damage index of modal strain energy is used for the damage localization analysis of the structure.Then,taking the average change rate of the structure unit modal strain energy as the input parameter,the stiffness reduction coefficient of the damaged unit as the output parameter,and utilizing the DBO algorithm which is an improved version of the optimal latin hypercubic method,the weights and thresholds of the BP neural network are optimized to perform the structural damage quantitative analysis.The concrete slab structure and flat rigid frame structure are used as exemplary models for damage identification verification.The results show that the proposed method is accurate in damage location identification,with high calculation efficiency for the degree of damage and small identification error as low as 0.4%,exhibiting excellent damage identification performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49