基于改进的模态应变能和DBO-BP神经网络的结构损伤识别方法  

Structural Damage Identification Based on Improved Modal Strain Energy and DBO-BP Neural Network

在线阅读下载全文

作  者:杨海军 马磊 徐永智 于聪 YANG Haijun;MA Lei;XU Yongzhi;YU Cong(Hebei Institute of Civil Engineering and Architecture,Zhangjiakou 075000,Hebei,China;Zhangjiakou Key Laboratory of Engineering Mechanical Analysis,Zhangjiakou 075000,Hebei,China)

机构地区:[1]河北建筑工程学院土木工程学院,河北张家口075000 [2]张家口市工程力学分析重点实验室,河北张家口075000

出  处:《力学季刊》2025年第1期118-129,共12页Chinese Quarterly of Mechanics

基  金:河北建筑工程学院研究生创新基金(XY2024016)。

摘  要:损伤识别是结构健康监测的重要环节之一.为了进一步提高损伤识别效率和精度,提出了基于改进的模态应变能指标和DBO-BP(Dung Beetle Optimization-Back Propagation)神经网络的两阶段结构损伤识别方法.首先采用改进的归一化模态应变能损伤指标进行结构的损伤定位分析,然后以结构的平均单元模态应变能变化率为输入参数,损伤单元刚度折减系数为输出参数,利用最优拉丁超立方方法改进后的蜣螂优化算法(Dung Beetle Optimization,DBO)优化BP(Back Propagation)神经网络权值和阈值,进行结构的损伤定量分析.以混凝土板结构和平面刚架结构作为算例进行损伤识别验证.结果表明,该方法损伤位置定位准确,损伤程度计算效率高,并且识别误差减小到了0.4%,损伤识别效果好.Damage identification is one of the most important aspects of structural health monitoring.In order to further improve the efficiency and accuracy of damage identification,a two-stage structural damage identification method based on the improved modal strain energy index and DBO-BP(Dung Beetle Optimization-Back Propagation)neural network is proposed.Firstly,the improved normalized damage index of modal strain energy is used for the damage localization analysis of the structure.Then,taking the average change rate of the structure unit modal strain energy as the input parameter,the stiffness reduction coefficient of the damaged unit as the output parameter,and utilizing the DBO algorithm which is an improved version of the optimal latin hypercubic method,the weights and thresholds of the BP neural network are optimized to perform the structural damage quantitative analysis.The concrete slab structure and flat rigid frame structure are used as exemplary models for damage identification verification.The results show that the proposed method is accurate in damage location identification,with high calculation efficiency for the degree of damage and small identification error as low as 0.4%,exhibiting excellent damage identification performance.

关 键 词:损伤识别 归一化模态应变能 最优拉丁超立方 蜣螂优化算法 BP神经网络 

分 类 号:TU375.2[建筑科学—结构工程] TU391

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象