检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhang Min-xing Fu Shi-yuan Gao Yu Cheng Yao-dong Abdulhafiz Ahmed Mustofa Chen Gang
机构地区:[1]Institute of High Energy Physics,Chinese Academy of Sciences,Beijing,100049,China [2]University of Chinese Academy of Sciences,Beijing,100049,China
出 处:《Radiation Detection Technology and Methods》2024年第4期1693-1703,共11页辐射探测技术与方法(英文)
摘 要:Purpose The rapid growth in image data generated by high-energy photon sources poses significant challenges for storage and analysis,with conventional compression methods offering compression ratios often below 1.5.Methods This study introduces a novel,fast lossless compression method that combines deep learning with a hybrid computing architecture to overcome existing compression limitations.By employing a spatiotemporal learning network for predictive pixel value estimation and a residual quantization algorithm for efficient encoding.Results When benchmarked against the DeepZip algorithm,our approach demonstrates a 40%reduction in compression time while maintaining comparable compression ratios using identical computational resources.The implementation of a GPU+CPU+FPGA hybrid architecture further accelerates compression,reducing time by an additional 38%.Conclusions This study presents an innovative solution for efficiently storing and managing large-scale image data from synchrotron radiation facilities,harnessing the power of deep learning and advanced computing architectures.
关 键 词:Lossless compression Deep learning Heterogeneous architecture Synchrotron radiation image
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49