Fast lossless images compression for synchrotron radiation facility using deep learning and hybrid architecture  

在线阅读下载全文

作  者:Zhang Min-xing Fu Shi-yuan Gao Yu Cheng Yao-dong Abdulhafiz Ahmed Mustofa Chen Gang 

机构地区:[1]Institute of High Energy Physics,Chinese Academy of Sciences,Beijing,100049,China [2]University of Chinese Academy of Sciences,Beijing,100049,China

出  处:《Radiation Detection Technology and Methods》2024年第4期1693-1703,共11页辐射探测技术与方法(英文)

摘  要:Purpose The rapid growth in image data generated by high-energy photon sources poses significant challenges for storage and analysis,with conventional compression methods offering compression ratios often below 1.5.Methods This study introduces a novel,fast lossless compression method that combines deep learning with a hybrid computing architecture to overcome existing compression limitations.By employing a spatiotemporal learning network for predictive pixel value estimation and a residual quantization algorithm for efficient encoding.Results When benchmarked against the DeepZip algorithm,our approach demonstrates a 40%reduction in compression time while maintaining comparable compression ratios using identical computational resources.The implementation of a GPU+CPU+FPGA hybrid architecture further accelerates compression,reducing time by an additional 38%.Conclusions This study presents an innovative solution for efficiently storing and managing large-scale image data from synchrotron radiation facilities,harnessing the power of deep learning and advanced computing architectures.

关 键 词:Lossless compression Deep learning Heterogeneous architecture Synchrotron radiation image 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象