超高压换流变压器局部放电精准检测技术研究  

Research on Precise Detection Technology of Partial Discharge in Ultra High Voltage Converter Transformers

在线阅读下载全文

作  者:王雪茜 Wang Xueqian(Qinhuangdao Power Supply Company,State Grid Jibei Electric Power Company Limited,Qinghuangdao 066000,Hebei,China)

机构地区:[1]国网冀北电力有限公司秦皇岛供电公司,河北秦皇岛066000

出  处:《云南电力技术》2025年第1期96-100,共5页Yunnan Electric Power

摘  要:采用单一传感技术进行局部放电参数采集时,只能捕捉到部分局部放电参数,导致放电检测的准确性较低。因此,提出超高压换流变压器局部放电精准检测方法。将超声波与高频电流传感器结合,从变压器复杂的电气环境中全面获取局部放电的关键参数。利用这些参数进行频域和多尺度特征提取,通过小波包变换技术提取局部放电信号的更深层次特征。将提取的特征与预先提取的特征进行对比,并利用牛顿-拉夫逊算法建立数学函数关系,实现了超高压换流变压器局部放电的精准检测与定位。实验结果表明,与对比方法相比,研究方法能够更准确地检测超高压换流变压器的局部放电现象,且检测灵敏度最高,从而提高了检测结果的准确性。When using a single sensing technology for partial discharge parameter acquisition,only partial discharge parameters can be captured,resulting in low accuracy of discharge detection.Therefore,a precise detection method for partial discharge of ultra-high voltage converter transformers is proposed.Combining ultrasonic waves with high-frequency current sensors to comprehensively obtain key parameters of partial discharge from the complex electrical environment of transformers.Utilize these parameters for frequency domain and multi-scale feature extraction,and extract deeper level features of partial discharge signals through wavelet packet transform technology.The extracted features were compared with the pre extracted features,and a mathematical function relationship was established using the Newton Raphson algorithm to achieve accurate detection and localization of partial discharge in ultra-high voltage converter transformers.The experimental results show that compared with the comparative method,the research method can more accurately detect the partial discharge phenomenon of ultra-high voltage converter transformers,and the detection sensitivity is the highest,thereby improving the accuracy of the detection results.

关 键 词:超高压换流变压器 局部放电检测 超声波传感器 高频电流传感器 放电位置定位 

分 类 号:TM74[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象