路基压实度预测模型的建立及评价  

The Establishment and Evaluation of the Prediction Model of Subgrade Compaction Degree

在线阅读下载全文

作  者:龙凯 邓经祥 李鸿钊 惠冰 石亚强 张文俊 LONG Kai;DENG Jingxiang;LI Hongzhao;HUI Bing;SHI Yaqiang;ZHANG Wenjun(Ji’ning Highway Devlopment Center,Ji’ning 272008,China;Gezhouba Group Transportation Investment Co.,Ltd.,Yichang 443005,China;Shandong Transportation Institute,Ji’nan 250031,China)

机构地区:[1]济宁市公路事业发展中心,济宁272008 [2]葛洲坝集团交通投资有限公司,宜昌443005 [3]山东省交通科学研究院,济南250031

出  处:《粉煤灰综合利用》2025年第1期124-128,144,共6页Fly Ash Comprehensive Utilization

基  金:山东省交通运输科技项目(2023B45)。

摘  要:路基压实度与道路的质量密切相关,直接影响工程的稳定性和耐久性。为了建立路基压实度预测模型,开展路基压实度现场试验,通过控制碾压次数、碾压速度和含水率的试验方法对压实度的影响规律,采用非线性回归、决策树、支持向量机、神经网格和XGBoost等算法建立了6个压实度预测模型,对其预测性能评价。结论表明:路基压实度与碾压次数呈正比,而与碾压速度呈反比。当含水率处于最优含水率时,路基压实度最大。含水率、碾压次数、碾压速度对压实度的影响依次降低;支持向量机模型对于训练集预测效果较差,决策树模型对于预测集的预测效果较差,不适用于路基压实度的预测;幂函数和对数函数两种非线性回归模型,神经网络和XGBoost两种机器学习模型适用于路基压实度的预测。机器学习的预测性能要高于非线性回归模型。Subgrade compaction is closely related to the quality of the road and directly affects the stability and durability of the project.In order to establish the prediction model of subgrade compaction,carry out the field test of subgrade compaction,through the control of the number of rolling,rolling speed and water content of the test method on the compaction of the law,the use of nonlinear regression,decision tree,support vector machine,neural lattice and XGBoost algorithms to establish a six compaction prediction model,and its prediction performance evaluation.The conclusion shows:The subgrade compaction degree is positively proportional to the number of rolling times and inversely proportional to the rolling speed.When the water content is at the optimal water content,the subgrade compaction is maximum.The effects of water content,number of rolling times and rolling speed on compaction are reduced in order;the support vector machine model has a poor prediction effect on the training set,and the decision tree model has a poor prediction effect on the prediction set,which is not applicable to the prediction of subgrade compaction;the two nonlinear regression models of the power function and the logarithmic function,and the two machine learning models of the neural network and the XGBoost are applicable to the prediction of the compaction degree of the subgrade.The prediction performance of machine learning is higher than the nonlinear regression model.

关 键 词:路基压实度 现场试验 预测模型 性能评价 机器学习 

分 类 号:U447[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象