基于非插值卷积自编码器的湍流降阶模型  

A turbulence reduced order model based on non-interpolated convolutional autoencoder

在线阅读下载全文

作  者:武频[1] 张波 宋超[3] 周铸 WU Pin;ZHANG Bo;SONG Chao;ZHOU Zhu(School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China;Institute of Artificial Intelligence,Shanghai University,Shanghai 200444,China;Computational Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China)

机构地区:[1]上海大学计算机工程与科学学院,上海200444 [2]上海大学人工智能研究院,上海200444 [3]中国空气动力研究与发展中心计算空气动力研究所,四川绵阳621000

出  处:《西北工业大学学报》2025年第1期149-153,共5页Journal of Northwestern Polytechnical University

基  金:空天飞行空气动力科学与技术全国重点实验室开放课题(SKLA-2024-KFKT-3-005,SKLA-2024-KFKT-3-006)资助。

摘  要:降阶模型通过代理数值模拟,有效降低了大规模流体动力学问题的计算成本。其中,降维和重构方法是降阶模型的关键组成部分。传统的本征正交分解基于线性映射,常常在处理流场时损失大量非线性流动信息。全连接结构的自编码器在处理较大规模流场网格时会导致模型参数爆炸,难以有效训练。为了获得均匀流场快照,卷积自编码器一般需要在流场上进行均匀插值,这通常伴随着插值误差和不必要的时间成本。为解决这些问题,提出了一种创新的非插值卷积自编码器,该模型可以提取流场的非线性特征,降低参数量,避免插值误差和额外的计算成本。在二维圆柱绕流算例上,降维重构的均方根误差均约为1×10^(-3),速度云图和绝对误差云图展示了非插值卷积自编码器在重构方面的卓越性能。Reduced-order modeling stands as a pivotal method in curbing the computational expenses linked with expansive fluid dynamics quandaries by employing proxy numerical simulations.Within this realm,downscaling and reconstruction methods serve as fundamental constituents of reduced-order modeling.The traditional intrinsic orthogonal decomposition relies on linear mapping,often relinquishing a substantial amount of nonlinear flow information within the flow field.Meanwhile,autoencoders equipped with fully-connected structures,maybe encounter a parameter explosion when handling larger-scale flow field meshes,impeding effective training.Convolutional autoencoders necessitate uniform interpolation across the flow field to attain a uniform flow field snapshot,yet this process frequently introduces interpolation errors and unwarranted temporal overheads.This paper introduces an innovative solution:a non-interpolated convolutional autoencoder,designed to extract nonlinear features from the flow field while curbing parameter count,evading interpolation errors,and mitigating additional computational burdens.Illustratively,in a two-dimensional cylindrical winding flow scenario,both the reduced dimensional reconstruction display root mean square errors of approximately 1×10^(-3).Notably,the velocity cloud and absolute error cloud vividly exhibit the non-interpolated convolutional autoencoder's remarkable prowess in reconstruction.

关 键 词:降阶模型 非插值卷积自编码器 降维重构 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] V211.3[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象