基于多智能体强化学习的可移动基站智能规划与优化  

Intelligent deployment and optimization of movable base stations based on multi-agent reinforcement learning

在线阅读下载全文

作  者:赵欣然 陈美娟[1] 袁志伟 朱晓荣[1] ZHAO Xinran;CHEN Meijuan;YUAN Zhiwei;ZHU Xiaorong(School of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)

机构地区:[1]南京邮电大学通信与信息工程学院,江苏南京210003

出  处:《电信科学》2025年第2期68-83,共16页Telecommunications Science

基  金:江苏省科技计划重点项目(No.BE2021013-2)。

摘  要:为了在城市环境中快速部署可移动基站并实现运维优化,针对终端用户移动带来的网络覆盖率下降问题与密集部署基站带来的干扰问题,提出了一种基于多智能体强化学习的网络覆盖规划与优化方法。在部署阶段,使用粒子群与果蝇混合优化算法,在建站成本最小化的情况下确定基站最优站址;在运维阶段,设计了多智能体深度确定性策略梯度算法与轻量级梯度提升机算法的联合优化算法,根据终端接收信号强度优化站址,在性能指标仍无法达到要求时,能自动在合适位置新增基站。仿真结果表明,所提出的站址规划算法在覆盖率与服务率方面均优于传统启发式算法;所设计的联合运维优化算法在网络覆盖率恢复能力方面优于传统k均值(k-means)聚类算法,并且能适应更多场景。To enable the rapid deployment of mobile base stations and optimize operations in urban environments,a network coverage planning and optimization method based on multi-agent reinforcement learning was proposed.This method was designed to address the issue of reducing network coverage due to user mobility and the interference caused by densely deployed base stations.During the deployment phase,a hybrid optimization algorithm combining particle swarm and fruit fly optimization was employed to determine the optimal base station locations while minimizing construction costs.In the operational phase,a joint optimization algorithm featuring multi-agent deep deterministic policy gradient and lightweight gradient boosting algorithms was designed to optimize base station locations based on terminal signal strength.Additionally,when performance indicators failed to meet requirements,new base stations were automatically added in suitable locations.Simulation results demonstrate that the proposed algorithm outperforms traditional heuristic algorithms in terms of coverage and service rates,while the designed joint operational optimization algorithm shows superior recovery capability in network coverage compared to the traditional k-means clustering algorithm,adapting to a wider range of scenarios.

关 键 词:可移动基站 站址 规划 优化 多智能体强化学习 

分 类 号:TN925[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象