检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LI Mingai WEI Lina 李明爱;魏丽娜
机构地区:[1]Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China [2]Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China
出 处:《Journal of Shanghai Jiaotong university(Science)》2024年第6期958-966,共9页上海交通大学学报(英文版)
基 金:Foundation item:the National Natural Science Foundation of China(Nos.62173010 and 11832003)。
摘 要:Deep learning has been applied for motor imagery electroencephalogram(MI-EEG)classification in brain-computer system to help people who suffer from serious neuromotor disorders.The inefficiency network and data shortage are the primary issues that the researchers face and need to solve.A novel MI-EEG classification method is proposed in this paper.A plain convolutional neural network(pCNN),which contains two convolution layers,is designed to extract the temporal-spatial information of MI-EEG,and a linear interpolation-based data augmentation(LIDA)method is introduced,by which any two unrepeated trials are randomly selected to generate a new data.Based on two publicly available brain-computer interface competition datasets,the experiments are conducted to confirm the structure of pCNN and optimize the parameters of pCNN and LIDA as well.The average classification accuracy values achieve 90.27%and 98.23%,and the average Kappa values are 0.805 and 0.965 respectively.The experiment results show the advantage of the proposed classification method in both accuracy and statistical consistency,compared with the existing methods.
关 键 词:motor imagery CLASSIFICATION convolutional neural network data augmentation deep learning braincomputer interface
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TN911[自动化与计算机技术—控制科学与工程] R318[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7