检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIU Yuesheng HE Ning HE Lile ZHANG Yiwen XI Kun ZHANG Mengrui 刘月笙;贺宁;贺利乐;张译文;习坤;张梦芮
出 处:《Journal of Shanghai Jiaotong university(Science)》2024年第6期1028-1036,共9页上海交通大学学报(英文版)
基 金:the National Natural Science Foundation of China(No.61903291);the Key Research and Development Program of Shaanxi Province(No.2022NY-094)。
摘 要:Model predictive control(MPC)is a model-based optimal control strategy widely used in robot systems.In this work,the MPC controller tuning problem for the path tracking of the wheeled mobile robot is studied and a novel self-tuning approach is developed.First,two novel path tracking performance indices,i.e.,steadystate time ratio and steady-state distance ratio are proposed to more accurately reflect the control performance.Second,the mapping relationship between the proposed indices and the MPC parameters is established based on machine learning technique,and then a novel controller structure which can automatically tune the control parameters online is further designed.Finally,experimental verification with an actual wheeled mobile robot is conducted,which shows that the proposed method could outperform the existing method via achieving significant improvement in the rapidity,accuracy and adaptability of the robot path tracking.
关 键 词:model predictive control(MPC) path tracking mobile robot machine learning parameter tuning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49