Comfort of Autonomous Vehicles Incorporating Quantitative Indices for Passenger Feeling  

在线阅读下载全文

作  者:PENG Shiwei ZHANG Xi ZHU Wangwang DOU Rui 彭诗玮;张希;朱旺旺;窦瑞(National Engineering Laboratory for Automotive Electronic Control Technology,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai SongHong Intelligent Automotive Technology Co.,Ltd.,Shanghai 201805,China)

机构地区:[1]National Engineering Laboratory for Automotive Electronic Control Technology,Shanghai Jiao Tong University,Shanghai 200240,China [2]Shanghai SongHong Intelligent Automotive Technology Co.,Ltd.,Shanghai 201805,China

出  处:《Journal of Shanghai Jiaotong university(Science)》2024年第6期1063-1070,共8页上海交通大学学报(英文版)

基  金:the Key Projects in Fields of Intergovernmental International Cooperation on Scientific and Technological Innovation(No.2019YFE0100200)。

摘  要:At present,most of the studies on autonomous vehicles mainly focus on improving driving safety and efficiency,while less consideration is given to the comfort of passengers.Therefore,in order to gain and optimize quantitative indices for the ride experience of autonomous vehicles,this paper proposes an evaluation method for the correlation between driving behavior and passenger comfort with bidirectional long short-term memory network and attention mechanism.By collecting subjective feeling scores of passengers under different driving styles,and measuring the pressure level with skin conductance response and heart rate variability,the comprehensive quantitative indices of passenger comfort caused by driving behavior are evaluated.Based on this,a personalized comfort evaluation model for passengers with different driving style preferences is established.The results obtained from experiments in open road and closed test areas have validated the effectiveness and feasibility of the method proposed in this paper.

关 键 词:autonomous vehicles passenger comfort physiological sensing bidirectional long short-term memory attention mechanism 

分 类 号:U471[机械工程—车辆工程] TP18[交通运输工程—载运工具运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象