基于密文策略属性加密的电网数据安全聚合  

Security Aggregation of Power Grid Data Based on Ciphertext Policy Attribute Encryption

在线阅读下载全文

作  者:于瀚洋 朱伯钊 YU Han-yang;ZHU Bo-zhao(School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan Hubei 430000,China;State Grid Qinhuangdao Power Supply Company,Qinhuangdao Hebei 066000,China)

机构地区:[1]华中科技大学人工智能与自动化学院,湖北武汉430000 [2]国网秦皇岛供电公司,河北秦皇岛066000

出  处:《计算机仿真》2025年第2期113-117,共5页Computer Simulation

基  金:国家自然科学基金(72171096)。

摘  要:智能电网中具有大量的用户和设备数据,数据聚合过程中需要确保数据的完整性和可信性,为此提出基于引力搜索机制的智能电网数据安全聚合方法。采集智能电网数据并对于采集到的数据进行奇异值分解与压缩处理,通过密文策略属性加密方法对处理后的电网数据实施加密。引入引力搜索机制对加密后的数据展开安全聚合,以达到智能电网数据安全聚合的目标。实验结果表明,利用所提方法对于智能电网数据进行加密处理后,风险数据占比大幅度降低,不同攻击下的信息丢失率较低,且能够将每一类数据精准聚合到一起,CEP值较低,说明上述方法的聚合精度和质量均较高,实际应用效果好。There is a large amount of user and device data in the smart grid,and the integrity and credibility of the data need to be ensured in the data aggregation process.Therefore,a safe data aggregation method for smart grid based on gravitational search mechanism is proposed.Collect smart grid data and conduct singular value decomposition and compression for the collected data.Encrypt the processed grid data through the encryption method of ciphertext strategy attribute.Introducing gravity search mechanism to securely aggregate encrypted data,in order to achieve the goal of secure aggregation of smart grid data.The experimental results show that after the proposed method is used to encrypt the smart grid data,the proportion of risk data is significantly reduced,the information loss rate under different attacks is low,and each type of data can be accurately aggregated together,and the CEP value is low,indicating that the aggregation accuracy and quality of the above methods are high,and the practical application effect is good.

关 键 词:引力搜索机制 智能电网 数据聚合 数据采集 数据加密 密文策略属性 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象