检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yingjun WANG Shijie LUO Jinyu GU Yuanfang ZHANG
机构地区:[1]National Engineering Research Center of Novel Equipment for Polymer Processing,The Key Laboratory of Polymer Processing Engineering of the Ministry of Education,Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing,South China University of Technology,Guangzhou 510641,China [2]Shien-Ming Wu School of Intelligent Engineering,South China University of Technology,Guangzhou 511442,China
出 处:《Frontiers of Mechanical Engineering》2025年第1期87-104,共18页机械工程前沿(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant No.52075184);Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2024A1515011786).
摘 要:In finite element analysis(FEA),optimizing the storage requirements of the global stiffness matrix and enhancing the computational efficiency of solving finite element equations are pivotal objectives.To address these goals,we present a novel method for compressing the storage of the global stiffness matrix,aimed at minimizing memory consumption and enhancing FEA efficiency.This method leverages the block symmetry of the global stiffness matrix,hence named the blocked symmetric compressed sparse column(BSCSC)method.We also detail the implementation scheme of the BSCSC method and the corresponding finite element equation solution method.This approach optimizes only the global stiffness matrix index,thereby reducing memory requirements without compromising FEA computational accuracy.We then demonstrate the efficiency and memory savings of the BSCSC method in FEA using 2D and 3D cantilever beams as examples.In addition,we employ the BSCSC method to an engine connecting rod model to showcase its superiority in solving complex engineering models.Furthermore,we extend the BSCSC method to isogeometric analysis and validate its scalability through two examples,achieving up to 66.13%memory reduction and up to 72.06%decrease in total computation time compared to the traditional compressed sparse column method.
关 键 词:finite element analysis global stiffness matrix blocked symmetric property memory reduction isogeometric analysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15