检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张紫欣 涂福泉[1] 陈向东 高路萍 王涛 白云 ZHANG Zixin;TU Fuquan;CHEN Xiangdong;GAO Luping;WANG Tao;BAI Yun(Key Laboratory of Metallurgical Equipment and Control,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China;Ezhou Pelletizing Co.,Ltd.,Wugang Resources Group,Ezhou 436000,Hubei,China;Daye Iron Mine Co.,Ltd.,Wugang Resources Group,Huangshi 435006,Hubei,China)
机构地区:[1]武汉科技大学冶金装备及其控制教育部重点实验室,湖北武汉430081 [2]武钢资源集团鄂州球团矿有限公司,湖北鄂州436000 [3]武钢资源集团大冶铁矿有限公司,湖北黄石435006
出 处:《黄金科学技术》2025年第1期193-201,共9页Gold Science and Technology
基 金:国家自然科学基金项目“航天用纳米颗粒多相流泵送机理及其分散均匀性主动调控研究”(编号:52375061)资助。
摘 要:在矿山复杂环境中,高磁性矿输送带异物检测面临场景干扰严重、识别难度大的挑战,针对高磁性矿中异物边缘信息易丢失和实时响应难度大的问题,提出了基于YOLOV8的深度学习图像检测方法。首先,建立输送带异物数据集,采用暗通道去雾技术对数据进行预处理,提升图像清晰度;然后,结合YOLOV8的网络特性,引入动态注意力机制,并用蛇形卷积代替普通卷积,允许模型在处理输入数据时动态地分配注意力,同时捕捉到更广泛的局部和全局特征;最后,改进动态检测头来灵活适配多尺度和多方向的检测需求,以提升模型的适应性并降低参数计算量。试验结果表明:基于YOLOV8的异物检测模型平均检测准确率达到96.4%,召回率为91%,平均检测时间仅为29 ms,完全满足矿山皮带运输现场对精准检测和实时性的要求。In the intricate setting of mining operations,identifying foreign objects on conveyor belts transporting high-magnetic ore is hindered by significant scene interference and substantial recognition challenges.To address the issues of frequent loss of foreign object edge information and the considerable difficulty in achieving real-time,high-speed responses in high-magnetic environments,we propose an image recognition and detection methodology grounded in deep learning techniques.Initially,a dataset of foreign objects on conveyor belts is constructed.To address the issue of image blurring,which arises from the highspeed operation of the belt conveyor and the limited data acquisition frequency of industrial cameras,the dark channel defogging technique is employed to preprocess the data,thereby enhancing image clarity.Subsequently,the core architecture of YOLOV8 is refined by incorporating a dynamic attention mechanism and substituting standard convolution with snake convolution.The dynamic attention mechanism enables the model to dynamically allocate focus during input data processing.Concurrently,the integration of snake convolution in place of traditional convolution,in conjunction with C2f,significantly enhances the model’s capacity to process image details.This unique structure facilitates the capture of a broader spectrum of local and global features,thereby substantially reducing the model’s rates of false positives and missed detections concerning buried foreign objects.In conclusion,the YOLOV8 architecture has been enhanced through the integration of a dynamic detection head,which allows for flexible adaptation to multi-scale and multi-directional detection requirements.This modification aims to improve the model’s adaptability and optimize the reduction of computational parameters,thereby significantly enhancing its real-time performance in complex environments.Experimental results demonstrate that the model achieves an average detection accuracy of 96.4%,a recall rate of 91%,and an average detection
关 键 词:异物检测 磁性矿输送带 动态监测 YOLOV8 图像去雾 蛇形卷积
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49