检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:向清风 邵蓥侠 徐泉清 杨传辉 XIANG Qing-Feng;SHAO Ying-Xia;XU Quan-Qing;YANG Chuan-Hui(School of Computer Science(National Pilot Software Engineering School),Beijing University of Posts and Telecommunications,Beijing 100876,China;Ant Group,Hangzhou 310013,China)
机构地区:[1]北京邮电大学计算机学院(国家示范性软件学院),北京100876 [2]蚂蚁集团,浙江杭州310013
出 处:《软件学报》2025年第3期1022-1039,共18页Journal of Software
基 金:国家自然科学基金(62272054,62192784);新一代人工智能国家科技重大专项(2022ZD0116315);北京市科技新星计划(20230484319);小米青年学者项目。
摘 要:数据库是计算机服务中的重要基础组件,然而其运行中可能出现性能异常,影响业务服务质量.如何对数据库产生的性能异常进行诊断成为工业界与学术界的热点问题.近年来,一系列自动化的数据库异常诊断方法被相继提出,它们通过分析数据库运行状态,对数据库整体的异常类型进行判断.但随着数据规模的不断扩大,分布式数据库正成为在业界中愈受欢迎的重要解决方案.在分布式数据库中,数据库整体由多个服务器节点共同组成.现有的异常诊断方法难以有效地定位节点异常,无法识别在多节点上发生的复合异常,不能感知节点间复杂的性能影响关系,欠缺有效的诊断能力.针对上述问题,提出了一种面向分布式数据库的复合异常诊断的方法:DistDiagnosis.该方法采用复合异常图对分布式数据库的异常状态进行建模,在表示各节点异常的同时有效地捕获节点间的相关性.DistDiagnosis提出了节点相关性感知的根因异常排序方法,根据节点对数据库整体的影响力有效地定位根因异常.在国产分布式数据库OceanBase上构建了不同场景的异常测试案例.实验结果表明,该方法优于其他先进的对比方法,异常诊断的AC@1、AC@3、AC@5最高达到0.97、0.98和0.98,在各诊断场景中相较于次优方法最多提升了5.20%、5.45%和4.46%.Databases are important foundational components in computer services.However,performance anomalies may occur during their operation,affecting business service quality.How to diagnose performance anomalies in databases has become a hot issue in industry and academia.Recently,a series of automated database anomaly diagnosis methods have been successively proposed.They analyze the runtime status of the database and determine the overall database anomaly types.However,with the continuous expansion of data scale,distributed databases are becoming an increasingly popular solution in the industry.In a distributed database,which is composed of multiple nodes,existing anomaly diagnosis methods struggle to effectively locate node anomalies,fail to identify compound anomalies across multiple nodes,and are unable to perceive the complex performance influence relationships between nodes,lacking effective diagnostic capabilities.To address these challenges,this study proposes a distributed database diagnosis method for compound anomalies,named DistDiagnosis.It models the anomalous state of distributed databases using a Compound Anomaly Graph,which not only represents anomalies at each node but also effectively captures the correlations between nodes.DistDiagnosis introduces a node correlation-aware root cause anomaly ranking method,effectively locating root cause anomalies according to the influence of nodes on the database.In this study,anomaly testing cases for various scenarios are constructed on OceanBase,a domestically developed distributed database.Experimental results show that DistDiagnosis outperforms other advanced baselines,achieving the AC@1,AC@3,and AC@5 values of 0.97,0.98,and 0.98.Compared to the second-best method,DistDiagnosis improves accuracy by up to 5.20%,5.45%,and 4.46%in each diagnostic scenario.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49