检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张永安 ZHANG Yongan
机构地区:[1]定西公路事业发展中心试验检测室,甘肃定西743000
出 处:《智能城市》2025年第2期140-142,共3页Intelligent City
摘 要:研究从水泥稳定碎石基层入手,采集数据并构建数据集,采用Image Labeler软件进行数据标注和数据增广。设计了基于空洞卷积的DeepLabV3+网络结合MobileNetV2的语义分割模型,并使用分水岭方法进一步改进模型分割结果。结果显示,模型准确率最大值为80.31%,最小值为53.77%,在集料和背景图片上的F值分别为0.85127和0.88127。经模型和分水岭方法处理后,图片的静矩变异系数主要集中在0.03~0.17。研究设计的基于空洞卷积的语义分割模型在沥青路面施工均匀性检测上表现出良好的性能,能有效提升检测效果。The study started with the cement-stabilized crushed stone base,collected data and constructed a dataset,and used Image Labeler software for data annotation and data augmentation.A semantic segmentation model based on the DeepLabV3+network with dilated convolution combined with MobileNetV2 was designed,and the watershed method was further used to improve the model's segmentation results.The results showed that the maximum accuracy of the model was 80.31%,and the minimum was 53.77%.The F-values of the model on aggregate and background images were 0.85127 and 0.88127,respectively.After processing with the model and the watershed method,the static moment variation coefficient of the images was mainly concentrated in the range of 0.03 to 0.17.The semantic segmentation model based on dilated convolution designed in this study showed good performance in the detection of the construction uniformity of asphalt pavement and could effectively improve the detection effect.
分 类 号:U416.2[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49