检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Sadegh Niroomand Dragan Pamucar Ali Mahmoodirad
机构地区:[1]Department of Industrial Engineering,Firouzabad Higher Education Center,Shiraz University of Technology,Shiraz,Iran [2]Department of Operations Research and Statistics,Faculty of Organizational Sciences,University of Belgrade,Belgrade,Serbia [3]Department of Industrial Engineering and Management,Yuan Ze University,Taoyuan City,Taiwan,China [4]Department of Mechanics and Mathematics,Western Caspian University,Baku,Azerbaijan [5]Department of Mathematics,Babol Branch,Islamic Azad University,Babol,Iran
出 处:《Journal of Systems Science and Systems Engineering》2025年第1期1-28,共28页系统科学与系统工程学报(英文版)
摘 要:Material requirement planning is a type of production planning problems that is used to plan about a final product, its sub-assemblies, and its raw parts simultaneously by considering time phased demands of the final product. In this study a multi-product material requirement planning problem with limited manufacturing resources is considered. As an important novelty, a multi-mode demand strategy is considered in this problem where the total customers’ satisfaction degrees of the selected demand modes is maximized. Furthermore, three types of capacities such as regular, over time, and outsourcing capacities are considered for such system as another novelty. The problem is formulated as a bi-objective model to maximize total profit and total satisfaction degree of the customers simultaneously. To respect the uncertain nature of the problem, it is formulated in a belief-degree based uncertain form. This is for the first time in the literature of material requirement planning that this type of uncertainty is considered. The uncertain problem is converted to a crisp form using some techniques such as expected value model and chance constrained model. Then, a new hybrid form of the fuzzy programming approach is developed to solve the bi-objective crisp formulations. A case study from the petroleum industries of Iran is used to perform the required computational experiments. The required experiments are done, and possible comparisons are made on the obtained results. Furthermore, some managerial insights are given in order to be used in the production system of the case study. According to the obtained results, the proposed hybrid fuzzy programming approach is superior to existing approaches in at least 38 percent of the experiments.
关 键 词:Material requirement planning multi-mode demand belief-degree based uncertainty multi-objective optimization fuzzy programming approach
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7