Evaluation of underground hard rock mine pillar stability using gene expression programming and decision tree-support vector machine models  

在线阅读下载全文

作  者:Mohammad H.Kadkhodaei Ebrahim Ghasemi Jian Zhou Melika Zahraei 

机构地区:[1]Department of Mining Engineering,Isfahan University of Technology,Isfahan,Iran [2]School of Resources and Safety Engineering,Central South University,Changsha,China

出  处:《Deep Underground Science and Engineering》2025年第1期18-34,共17页深地科学(英文)

摘  要:Assessing the stability of pillars in underground mines(especially in deep underground mines)is a critical concern during both the design and the operational phases of a project.This study mainly focuses on developing two practical models to predict pillar stability status.For this purpose,two robust models were developed using a database including 236 case histories from seven underground hard rock mines,based on gene expression programming(GEP)and decision tree-support vector machine(DT-SVM)hybrid algorithms.The performance of the developed models was evaluated based on four common statistical criteria(sensitivity,specificity,Matthews correlation coefficient,and accuracy),receiver operating characteristic(ROC)curve,and testing data sets.The results showed that the GEP and DT-SVM models performed exceptionally well in assessing pillar stability,showing a high level of accuracy.The DT-SVM model,in particular,outperformed the GEP model(accuracy of 0.914,sensitivity of 0.842,specificity of 0.929,Matthews correlation coefficient of 0.767,and area under the ROC of 0.897 for the test data set).Furthermore,upon comparing the developed models with the previous ones,it was revealed that both models can effectively determine the condition of pillar stability with low uncertainty and acceptable accuracy.This suggests that these models could serve as dependable tools for project managers,aiding in the evaluation of pillar stability during the design and operational phases of mining projects,despite the inherent challenges in this domain.

关 键 词:decision tree-support vector machine(DT-SVM) gene expression programming(GEP) hard rock pillar stability underground mining 

分 类 号:TD803[矿业工程—矿山开采] TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象