Enhancing aquaculture water quality forecasting using novel adaptive multi-channel spatial-temporal graph convolutional network  

作  者:Tianqi Xiang Xiangyun Guo Junjie Chi Juan Gao Luwei Zhang 

机构地区:[1]College of Computer Science,Beijing Information Science&Technology University,Beijing 102206,China [2]College of Management Science and Engineering,Beijing Information Science&Technology University,Beijing 102206,China [3]College of Engineering,China Agricultural University,Beijing 100083,China

出  处:《International Journal of Agricultural and Biological Engineering》2025年第1期279-291,共13页国际农业与生物工程学报(英文)

基  金:funded by the National Key Research and Development Program of China:Sino-Malta Fund 2022“Autonomous Biomimetic Underwater Vehicle for Digital Cage Monitoring”(Grant No.2022YFE0107100).

摘  要:In recent years,aquaculture has developed rapidly,especially in coastal and open ocean areas.In practice,water quality prediction is of critical importance.However,traditional water quality prediction models face limitations in handling complex spatiotemporal patterns.To address this challenge,a prediction model was proposed for water quality,namely an adaptive multi-channel temporal graph convolutional network(AMTGCN).The AMTGCN integrates adaptive graph construction,multi-channel spatiotemporal graph convolutional network,and fusion layers,and can comprehensively capture the spatial relationships and spatiotemporal patterns in aquaculture water quality data.Onsite aquaculture water quality data and the metrics MAE,RMSE,MAPE,and R^(2) were collected to validate the AMTGCN.The results show that the AMTGCN presents an average improvement of 34.01%,34.59%,36.05%,and 17.71%compared to LSTM,respectively;an average improvement of 64.84%,56.78%,64.82%,and 153.16%compared to the STGCN,respectively;an average improvement of 55.25%,48.67%,57.01%,and 209.00%compared to GCN-LSTM,respectively;and an average improvement of 7.05%,5.66%,7.42%,and 2.47%compared to TCN,respectively.This indicates that the AMTGCN,integrating the innovative structure of adaptive graph construction and multi-channel spatiotemporal graph convolutional network,could provide an efficient solution for water quality prediction in aquaculture.

关 键 词:water quality prediction AQUACULTURE spatial-temporal graph convolutional network MULTI-CHANNEL adaptive graph construction 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象