检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张步云 邹康 王勇[1] ZHANG Buyun;ZOU Kang;WANG Yong(Automotive Engineering Research Institute,Jiangsu University,Jiangsu Zhenjiang 212013,China)
机构地区:[1]江苏大学汽车工程研究院,江苏镇江212013
出 处:《机械设计与制造》2025年第3期226-230,236,共6页Machinery Design & Manufacture
基 金:国家自然科学基金(51705205,12172153);江苏省高等学校基础科学(自然科学)研究项目资助(21KJA460002)。
摘 要:低地板电动客车常采用电池组置于车顶的布置方式,这使得车辆重心升高而影响其安全性。在保证车顶力学性能需求前提下,进行多目标结构轻量化设计是解决该问题的有效方案之一。首先,针对低地板电动客车承载式车身特点,对车顶参数化模型进行刚、强度分析和模态分析;继而通过灵敏度分析筛选出7组对质量和刚度影响较大的设计变量;根据拉丁超立方试验设计得到的仿真结果数据,利用径向基(RBF)神经网络建立近似模型,以车顶质量最小、载荷作用下位移最小为目标,采用NSGA-III算法进行多目标优化,并对比分析前后模型的结构性能。优化结果表明:在不改变材料的前提下,车顶实现减重11.32kg,降低超过1.5%,而力学性能变化在1%左右。这里研究可为特殊种类电动车辆轻量化结构设计提供参考。Low-floor electric buses(LFEB)usually adopt the layout of installing the battery packs on the roof,which may significantly reduce the traveling safety of the bus with the rise of center of gravity.On the premise of ensuring the mechanical properties requirements of the roof,proposes a multi-objective optimization method based on structure lightweight design to solve this problem.Analysis of the stiffness,strength and modal of the parameterized roof model are first carried out according to the characteristics of the unitary construction form of LFEB.Seven groups of design variables that have great influence on mass and stiffness are then screened through sensitivity analysis.According to the simulation results obtained from the Latin hypercube experimental design,the radial basis function(RBF)neural network is used to establish an approximate model.Aiming at minimizing the mass and displacement of roof under loads,NSGA-III algorithm is used to carry out multi-objective optimization.The structural performances of the model before and after optimization are compared.The optimization results show that the weight of the roof is reduced by 11.32kg(more than 1.5%)without changing the materials,whereas the mechanical properties are degraded no more than 1%.
关 键 词:多目标优化 RBF径向基神经网络 NSGA-III优化算法 结构轻量化设计 灵敏度分析 有限元分析
分 类 号:TH16[机械工程—机械制造及自动化] U463.82[机械工程—车辆工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.123.140