A deep reinforcement learning framework and its implementation for UAV-aided covert communication  

在线阅读下载全文

作  者:Shu FU Yi SU Zhi ZHANG Liuguo YIN 

机构地区:[1]College of Microelectronics and Communication Engineering,Chongqing University,Chongqing 400044,China [2]Department of Electronic Engineering,Tsinghua University,Beijing 100084,China [3]Beijing National Research Center for Information Science and Technology,Tsinghua University,Beijing 100084,China

出  处:《Chinese Journal of Aeronautics》2025年第2期403-417,共15页中国航空学报(英文版)

基  金:This study was co-supported by the National Natural Science Foundation of China(No.62025110&62271093);the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-LZX0108).

摘  要:In this work,we consider an Unmanned Aerial Vehicle(UAV)-aided covert transmission network,which adopts the uplink transmission of Communication Nodes(CNs)as a cover to facilitate covert transmission to a Primary Communication Node(PCN).Specifically,all nodes transmit to the UAV exploiting uplink non-Orthogonal Multiple Access(NOMA),while the UAV performs covert transmission to the PCN at the same frequency.To minimize the average age of covert information,we formulate a joint optimization problem of UAV trajectory and power allocation designing subject to multi-dimensional constraints including covertness demand,communication quality requirement,maximum flying speed,and the maximum available resources.To address this problem,we embed Signomial Programming(SP)into Deep Reinforcement Learning(DRL)and propose a DRL framework capable of handling the constrained Markov decision processes,named SP embedded Soft Actor-Critic(SSAC).By adopting SSAC,we achieve the joint optimization of UAV trajectory and power allocation.Our simulations show the optimized UAV trajectory and verify the superiority of SSAC compared with various existing baseline schemes.The results of this study suggest that by maintaining appropriate distances from both the PCN and CNs,one can effectively enhance the performance of covert communication by reducing the detection probability of the CNs.

关 键 词:Covert communication Unmanned aerial vehicle Deep reinforcement learning Trajectory planning Power allocation Communication systems 

分 类 号:V27[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象