A parameter-variant trochoidal-like tool path planning method for chatter-free and high-efficiency milling  

作  者:Zhaoliang LI Jinbo NIU Shuoxue SUN Yuwen SUN 

机构地区:[1]School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China [2]State Key Laboratory of High-Performance Precision Manufacturing,Dalian 116024,China

出  处:《Chinese Journal of Aeronautics》2025年第2期559-576,共18页中国航空学报(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.U22A20202 and 52275477).

摘  要:Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lower machining efficiency and longer machining time due to its time-varying cutter-workpiece engagement angle and a high percentage of non-cutting tool paths.To address these issues,this paper introduces a parameter-variant trochoidal-like(PVTR)tool path planning method for chatter-free and high-efficiency milling.This method ensures a constant engagement angle for each tool path period by adjusting the trochoidal radius and step.Initially,the nonlinear equation for the PVTR toolpath is established.Then,a segmented recurrence method is proposed to plan tool paths based on the desired engagement angle.The impact of trochoidal tool path parameters on the engagement angle is analyzed and coupled this information with the milling stability model based on spindle speed and engagement angle to determine the desired engagement angle throughout the machining process.Finally,several experimental tests are carried out using the bull-nose end mill to validate the feasibility and effectiveness of the proposed method.

关 键 词:Trochoidal milling Milling stability Tool path planning Machining efficiency Bull-nose end mill 

分 类 号:TG5[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象