检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张东晓[1] 王佳毅 叶贵 马素凡 ZHANG Dongxiao;WANG Jiayi;YE Gui;MA Sufan(College of Science,Jimei University,Xiamen 361021,China)
出 处:《内蒙古民族大学学报(自然科学版)》2025年第2期59-68,共10页Journal of Inner Mongolia Minzu University:Natural Sciences Edition
基 金:国家自然科学基金项目(12271211);福建省科技创新智库课题研究项目(FJKX-2023XKB007)。
摘 要:目前酒精成瘾主要由医生根据经验来诊断,主观性较强,使用脑电图(EEG)检测酒瘾,可以辅助医生做出客观的判断。提出一种基于注意力机制的酒瘾检测模型AADNet。AADNet由卷积模块、自注意力模块、特征增强模块和分类模块构成。卷积模块通过空间卷积和时间卷积,提取EEG信号的局部特征;自注意力模块通过空间自注意力机制和特征自注意力机制提取EEG信号的全局特征;特征增强模块进一步融合局部特征和全局特征,提取与类别强相关的特征;分类模块负责预测酒瘾的概率。实验结果表明,本文模型可以有效检测酒瘾,在公开数据集上的准确率可以达到100.00%,优于目前的大多数算法。Alcohol addiction is currently mainly diagnosed by doctors based on experience,which is highly subjective.The use of electroencephalography(EEG)to detect alcohol addiction can assist doctors in making objective judgments.This study proposes an alcohol addiction detection CNN model AADNet based on attention mechanism.AADNet consists of a convolution module,a self-attention module,a feature enhancement module and a classification module.The convolution module extracts the local features of EEG signals through spatial convolution and temporal convolution.The self-attention module extracts the global features of EEG signals through the spatial self-attention mechanism and the feature self-attention mechanism.The feature enhancement module further fuses local features and global features to extract features strongly related to categories.The classification module is responsible for predicting the probability of alcohol addiction.The experimental results show that the proposed model can effectively detect alcohol addiction,and the accuracy on the public data set can reach 100.00%,which is better than most of the current algorithms.
分 类 号:TN911.7[电子电信—通信与信息系统] TP183[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.26.71