基于离散格网的大气污染扩散模拟研究  

Research on Atmospheric Pollution Dispersion Simulation Based on Discrete Grid

在线阅读下载全文

作  者:章鹏飞 王磊[1] 赵含旭 殷楠 ZHANG Pengfei;WANG Lei;ZHAO Hanxu;YIN Nan(School of Surveying and Land Information Engineering,Henan Polytechnic University,Jiaozuo 454003,China)

机构地区:[1]河南理工大学测绘与国土信息工程学院,河南焦作454003

出  处:《环境科学与技术》2025年第3期47-54,共8页Environmental Science & Technology

基  金:国家自然科学基金项目(41801318);河南理工大学青年骨干教师资助计划项目(2019XQG-03);河南省高等学校青年骨干教师培养计划项目(2023GGJS054);河南理工大学博士基金项目(B2017-14)。

摘  要:大气污染对人类健康和环境造成了严重的影响,了解、预测大气污染的传输和扩散过程至关重要。高斯扩散模型作为大气污染预测和评估的重要工具,能够较为准确地描述大气污染物的传输和扩散过程。然而,基于四边形网格的高斯模型由于其非各向同性导致计算复杂度较高,且模型存在许多限制,而六边形离散格网则提供了一种高效且精确的离散化方法。文章通过将六边形格网与高斯扩散模型结合,基于元胞自动机原理,实现对大气污染扩散的精确建模,并通过Cesium展示模拟结果。实验表明,建立的模型可以较好地模拟污染物的扩散状态,从而更好地理解和分析大气污染扩散的特征,为大气污染的预防与治理提供科学依据。Atmospheric pollution has a serious impact on human health and the environment,making it crucial to understand and predict the transport and diffusion processes of atmospheric pollutants.The Gaussian diffusion model serves as an impor⁃tant tool for predicting and assessing atmospheric pollution,accurately describing the transport and diffusion processes of pol⁃lutants.However,the Gaussian model based on rectangular grids has high computational complexity due to its non-isotropic nature and various limitations.In contrast,a hexagonal discrete grid offers an efficient and precise discretization method.By combining a hexagonal grid with a Gaussian diffusion model,accurate modeling of atmospheric pollution dispersion is achieved based on the principles of cellular automata,and the simulation results are displayed using Cesium.Experiments demonstrate that the established model can effectively simulate the diffusion state of pollutants,thereby enhancing the under⁃standing and analysis of the characteristics of atmospheric pollution dispersion and providing a scientific basis for the preven⁃tion and control of air pollution.

关 键 词:离散格网 六边形 大气污染 高斯扩散模型 元胞自动机 

分 类 号:X51[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象