Tailoring the d-band electronic structure of FePc by direct oxygen bridge on ZIF-8 derived ultrathin carbon shell to improve the oxygen reduction performance  

在线阅读下载全文

作  者:Xilin Zhang Shan Wang Zhiyi Sun Zhongjun Ma Huixuan Wang Zongxian Yang Qingfang Chang Wenxing Chen 

机构地区:[1]School of Physics,Henan Normal University,Xinxiang 453007,China [2]Energy&Catalysis Center,School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China [3]Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control,Ministry of Education,School of Environment,Henan Normal University,Xinxiang 453007,China

出  处:《Nano Research》2025年第3期132-141,共10页纳米研究(英文版)

基  金:financially supported by the National Natural Science Foundation of China(Nos.U180413,11904084,and U2004212);Center for Outstanding Overseas Scientists(No.GZS2023007).

摘  要:Molecular catalysts with well-defined single atom sites and coordination environments exhibit significant potential as oxygen reduction electrocatalysts,but suffering from the activity and stability issues.Herein,the ultrathin carbon shell supported FePc molecule electrocatalysts(FePc/TA-ONG-N),featuring with a direct oxygen bridging between FePc and carbon substrate,were designed and synthesized.The direct connection with oxygen atom on carbon substrate,certified by the Fourier transform infrared spectroscopy(FTIR)and extended X-ray absorption fine structure(EXAFS),can remarkably enhance the interaction and facilitate electron transfer from Fe,leading to an improved activity by reducing adsorption strength of intermediate species through lowering the d-band center position.The resultant half-wave potential of 0.902 V together with a Tafel slope of 23.64 mV·dec^(−1)is superior to Pt/C and control samples.Such catalyst holds a promise as air-cathode electrocatalyst in Zn-air battery with excellent operation stability exceeding 80 h.The density functional theory(DFT)calculations and molecular dynamic simulations unveiled that the O-bridge can effectively stabilize the FePc molecule and function as electron buffer to donate/gain electrons to/from Fe atom during the adsorption of oxygenates.The current findings are insightful for developing molecular catalysts with high performance through substrate engineering and axial coordination.

关 键 词:metal-organic framework axial coordination interfacial electron transfer iron phthalocyanine oxygen reduction reaction 

分 类 号:O64[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象