机构地区:[1]Beijing National Laboratory for Molecular Sciences,CAS Key Laboratory of Organic Solids,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China [2]School of Chemical Science,University of Chinese Academy of Sciences,Beijing 100049,China [3]Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction,Hong Kong University of Science and Technology,Hong Kong 999077,China [4]State Key Laboratory of Chemical Resource Engineering,Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China [5]Laboratory of Advanced Optoelectronic Materials,College of Chemistry,Chemical Engineering and Materials Science,Soochow University,Suzhou 215123,China
出 处:《Science China Materials》2025年第3期830-837,共8页中国科学(材料科学)(英文版)
基 金:supported by the National Natural Science Foundation of China(52203248,52103243 and 52173188);the Key Research Program of the Chinese Academy of Sciences(XDPB13);the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB 0520102);the Basic and Applied Basic Research Major Program of Guangdong Province(2019B030302007);Beijing National Laboratory for Molecular Science(2019BMS20017);the support from the Hong Kong Research Grants Council(GRF Project,16303024 and 16310824).
摘 要:Organic photovoltaic(OPV)is one of the most promising technologies for powering indoor electronic devices.The high-performance indoor organic photovoltaics(IOPV)require medium bandgap materials to absorb visible light efficiently and reduce energy loss.However,state-of-theart A-DA’D-A type small molecule acceptors(SMAs)have absorptions in the near-infrared region which mismatches with the room light.In this work,two medium bandgap ADA’D-A type SMAs BTOL-Br and DFOL-Br were synthesized by a molecular synergetic modification strategy for the applications in IOPV.Our results show that DFOL-Br with replacing the A’unit of benzothiadiazole in BTOL-Br by difluorine substituted benzene ring,exhibits blue-shifted absorption spectra and an up-shifted lowest unoccupied molecular orbital(LUMO)energy level than those of BTOL-Br.When blending the SMAs with a polymer donor PBQx-TCl,the DFOL-Br-based film shows more ordered molecular packing and suitable phase separation.As a result,the DFOLBr-based device achieves a higher indoor efficiency of 26.8% under a 2600 K light-emitting diode lamp at 2000 lux than that of the BTOL-Br-based one(23.2%).This work indicates that the synergetic modification is an effective strategy for preparing medium bandgap A-DA’D-A type SMAs,which may become a useful SMA design guideline for developing highperformance IOPVs.有机光伏是一种极具潜力的用于驱动室内电子设备的技术.高性能室内有机光伏器件需要中等带隙受体材料来吸收可见光并将其转化为电能.然而,目前典型的高效A-DA’D-A型小分子受体的吸收主要集中在近红外区域,这与室内光源的发射光谱并不匹配.为了解决这一光谱匹配问题,同时获得高性能室内光伏受体材料,我们采用分子协同调控策略合成了两个中等带隙A-DA’D-A型小分子受体,BTOL-Br和DFOL-Br.与BTOL-Br相比,DFOL-Br分子由于其A’单元上的噻二唑单元被两个氟原子取代,因而使其获得了更为蓝移的吸收光谱和显著上移的最低未占据分子轨道能级.材料的这些特性都将有利于DFOL-Br在室内光伏应用中获得更好的表现.我们将这些小分子受体与聚合物给体PBQx-TCl共混后制备了有机光伏器件,其中基于DFOL-Br分子的活性层表现出更为有序的分子堆积和更合适的相分离尺度.最终,基于DFOL-Br的器件在2600 K LED灯2000 lux的光照强度下表现出26.8%的室内光伏效率,其远高于基于BTOL-Br分子的器件(23.2%).这一研究结果表明,协同调控是一种有效地调节分子带隙,并制备中等带隙ADA’D-A型小分子受体的策略,该策略或将为可应用于室内光伏的高效小分子受体的设计合成提供借鉴,从而推动室内光伏商业化应用的发展.
关 键 词:indoor organic photovoltaics medium bandgap small molecule acceptors synergetic modification strategy
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...