A regularization method for delivering the fourth-order derivative of experimental data and its applications in fluid-structure interactions  

作  者:Fan DUAN Jin-Jun WANG 

机构地区:[1]Fluid Mechanics Key Laboratory of Education Ministry,Beijing University of Aeronautics and Astronautics,Beijing,100191,China

出  处:《Science China(Technological Sciences)》2025年第3期359-376,共18页中国科学(技术科学英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.12127802 and 11721202)。

摘  要:In the experimental investigation of fluid-structure interactions regarding the undulatory motion like flag flapping or fish swimming,solving the force distribution on the flexible body stands as an indispensable endeavor to gain insights into the underlying dynamic mechanisms.However,the solving process entails high-order numerical derivatives of experimental data,which poses a formidable challenge for experimental studies on fluid-structure interactions,given that the measurement noise inherent in experimental data renders the problem ill-posed.The commonly practiced regularization methods for numerical derivatives are feeble to tackle the fourth-order derivative associated with the bending force;those methods,in particular,require predetermined parameters about the unknown noise.We introduce here an empirical regularization method founded upon the kernel-term modification in the frequency domain,notably capable of determining the fourth derivative of experimental data.By leveraging the potentials of the iterative operations,our method enables the reliable estimation of an approximately optimal regularization parameter,all without reliance on any a priori knowledge about the noise characteristics.To demonstrate the reliability,robustness,and accuracy of the method,we perform rigorous numerical assessments using different data models that are infused with noise varying several orders of magnitude.Additionally,practical application of this method is achieved in the experiment on a flexible film flapping in the gusty flow,where the spatiotemporal distribution of the bending force density on the film is calculated by integrating this method with a linear reconstruction.

关 键 词:high-order numerical derivative REGULARIZATION FILM fluid-structure interactions bending force 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象