检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xinghao Du Jinhao Meng Yassine Amirat Fei Gao Mohamed Benbouzid
机构地区:[1]UMR CNRS 6027 IRDL,University of Brest,Brest 29238,France [2]School of Electrical Engineering,xi'an Jiaotong University,Xi'an 710049,Shaanxi,China [3]L@bISEN,ISEN Yncrea Ouest,Brest 29200,France [4]Schoolof Energy and Computer Science,University of Technology of Belfort-Montbeliard,Belfort 90000,France
出 处:《Journal of Energy Chemistry》2025年第2期87-98,I0003,共13页能源化学(英文版)
摘 要:Battery health evaluation and management are vital for the long-term reliability and optimal performance of lithium-ion batteries in electric vehicles.Electrochemical impedance spectroscopy(EIS)offers valuable insights into battery degradation analysis and modeling.However,previous studies have not adequately addressed the impedance uncertainties,particularly during battery operating conditions,which can substantially impact the robustness and accuracy of state of health(SOH)estimation.Motivated by this,this paper proposes a comprehensive feature optimization scheme that integrates impedance validity assessment with correlation analysis.By utilizing metrics such as impedance residuals and correlation coefficients,the proposed method effectively filters out invalid and insignificant impedance data,thereby enhancing the reliability of the input features.Subsequently,the extreme gradient boosting(XGBoost)modeling framework is constructed for estimating the battery degradation trajectories.The XGBoost model incorporates a diverse range of hyperparameters,optimized by a genetic algorithm to improve its adaptability and generalization performance.Experimental validation confirms the effectiveness of the proposed feature optimization scheme,demonstrating the superior estimation performance of the proposed method in comparison with four baseline techniques.
关 键 词:Lithium-ion battery Stateof health Electrochemical impedance spectroscopy Extreme gradient boosting
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7