Fairness-guided federated training for generalization and personalization in cross-silo federated learning  

在线阅读下载全文

作  者:Ruipeng ZHANG Ziqing FAN Jiangchao YAO Ya ZHANG Yanfeng WANG 

机构地区:[1]School of Artificial Intelligence,Shanghai Jiao Tong University,Shanghai 200240,China [2]Cooperative Medianet Innovation Center,Shanghai Jiao Tong University,Shanghai 200240,China [3]Shanghai Artificial Intelligence Laboratory,Shanghai 200232,China

出  处:《Frontiers of Information Technology & Electronic Engineering》2025年第1期42-61,共20页信息与电子工程前沿(英文版)

基  金:Project supported by the National Key R&D Program of China(No.2022ZD0160702);the STCSM(Nos.22511106101,18DZ2270700,and 21DZ1100-100);the 111 Plan(No.BP0719010);the State Key Laboratory of UHD Video and Audio Production and Presentation。

摘  要:Cross-silo federated learning(FL),which benefits from relatively abundant data and rich computing power,is drawing increasing focus due to the significant transformations that foundation models(FMs)are instigating in the artificial intelligence field.The intensified data heterogeneity issue of this area,unlike that in cross-device FL,is caused mainly by substantial data volumes and distribution shifts across clients,which requires algorithms to comprehensively consider the personalization and generalization balance.In this paper,we aim to address the objective of generalized and personalized federated learning(GPFL)by enhancing the global model’s cross-domain generalization capabilities and simultaneously improving the personalization performance of local training clients.By investigating the fairness of performance distribution within the federation system,we explore a new connection between generalization gap and aggregation weights established in previous studies,culminating in the fairness-guided federated training for generalization and personalization(FFT-GP)approach.FFT-GP integrates a fairness-aware aggregation(FAA)approach to minimize the generalization gap variance among training clients and a meta-learning strategy that aligns local training with the global model’s feature distribution,thereby balancing generalization and personalization.Our extensive experimental results demonstrate FFT-GP’s superior efficacy compared to existing models,showcasing its potential to enhance FL systems across a variety of practical scenarios.

关 键 词:Generalized and personalized federated learning Performance distribution fairness Domain shift 

分 类 号:P20[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象